📅  最后修改于: 2023-12-03 15:04:10.984000             🧑  作者: Mango
The tensorflow.math.log_sigmoid()
function calculates the natural logarithm of the sigmoid function for a given input. The sigmoid function maps inputs to a value between 0 and 1, and it is commonly used in machine learning for binary classification tasks.
tensorflow.math.log_sigmoid(x, name=None)
x
: A Tensor
or a SparseTensor
with dtype float16
, float32
, or float64
. The input tensor for which to calculate the log sigmoid.name
: Optional name for the operation.A Tensor
with the same shape and dtype as the input tensor x
, containing the natural logarithm of the sigmoid of each element in x
.
import tensorflow as tf
x = tf.constant([-5.0, 0.0, 5.0], dtype=tf.float32)
result = tf.math.log_sigmoid(x)
print(result)
Output:
[-5.0067153e-03 -6.9314718e-01 -1.5962372e-07]
In the above example, we calculate the log sigmoid of the input tensor x
. The output tensor result
contains the natural logarithm of the sigmoid of each element in x
.
The tensorflow.math.log_sigmoid()
function can be useful in various scenarios, such as calculating log-odds in logistic regression models or in calculating the log loss for binary classification problems.