Python| TensorFlow log() 方法
Tensorflow 是谷歌开发的开源机器学习库。它的应用之一是开发深度神经网络。
模块tensorflow.math为许多基本的数学运算提供支持。函数tf.log() [别名 tf.math.log] 为 Tensorflow 中的自然对数函数提供支持。它期望复数形式的输入为或浮点数。输入类型是张量,如果输入包含多个元素,则计算元素对数, .
Syntax: tf.log(x, name=None) or tf.math.log(x, name=None)
Parameters:
x: A Tensor of type bfloat16, half, float32, float64, complex64 or complex128.
name (optional): The name for the operation.
Return type: A Tensor with the same size and type as that of x.
代码#1:
Python3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 5
a = tf.constant([-0.5, -0.1, 0, 0.1, 0.5], dtype = tf.float32)
# Applying the log function and
# storing the result in 'b'
b = tf.log(a, name ='log')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 20 with values from 0 to 1 and 1 to 10
a = np.append(np.linspace(0, 1, 10), np.linspace(1, 10, 10))
# Applying the logarithmic function and
# storing the result in 'b'
b = tf.log(a, name ='log')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.abs")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()
输出:
Input type: Tensor("Const:0", shape=(5, ), dtype=float32)
Input: [-0.5 -0.1 0. 0.1 0.5]
Return type: Tensor("log:0", shape=(5, ), dtype=float32)
Output: [ nan nan -inf -2.3025851 -0.6931472]
表示负值不存在自然对数,并且表示当输入接近零时它接近负无穷大。
代码 #2:可视化
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 20 with values from 0 to 1 and 1 to 10
a = np.append(np.linspace(0, 1, 10), np.linspace(1, 10, 10))
# Applying the logarithmic function and
# storing the result in 'b'
b = tf.log(a, name ='log')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.abs")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()
输出:
Input: [ 0. 0.11111111 0.22222222 0.33333333 0.44444444 0.55555556
0.66666667 0.77777778 0.88888889 1. 1. 2.
3. 4. 5. 6. 7. 8.
9. 10. ]
Output: [ -inf -2.19722458 -1.5040774 -1.09861229 -0.81093022 -0.58778666
-0.40546511 -0.25131443 -0.11778304 0. 0. 0.69314718
1.09861229 1.38629436 1.60943791 1.79175947 1.94591015 2.07944154
2.19722458 2.30258509]