给定两个整数K , X和一个包含N个不同元素的数组arr [] ,任务是从给定数组中找到最接近第K个最小元素的X个元素。
例子:
Input: arr[] = {1, 2, 3, 4, 10}, K = 3, X = 2
Output: 2 3
Explanation: Kth smallest element present in the given array is 3 and X(= 2) closest array elements to 3 are {2, 3} or {3, 4}.
Therefore, the required output is 2 3.
Input: arr[] = {1, 9, 8, 2, 7, 3, 6, 4, 5, 10, 13, 12, 16, 14, 11, 15}, K = 3, X = 5
Output: 1 2 3 4 5
天真的方法:解决此问题的最简单方法是使用两指针技术对数组进行排序,并将X个最接近的元素打印到给定数组的第K个最小元素。
时间复杂度: O(N * log N)
辅助空间: O(1)
高效方法:为了优化上述方法,其思想是使用中值选择算法有效地计算给定数组的第K个最小元素的值。请按照以下步骤解决问题:
- 使用中值选择算法计算给定数组的最小Kth,例如KthElem。
- 初始化一个数组,比如说diff []来存储arr [i]和KthElem的绝对差。
- 创建一个映射,例如说要映射,以将数组的每个元素映射到当前元素和KthElem的绝对差。
- 遍历给定的数组,并将arr [i]附加到maps [abs(KthElem – arr [i])] 。
- 使用中位数选择算法计算第X个最小元素,例如diff []数组的XthElem ,以精确打印X个最接近的项。
- 最后,遍历diff []数组并检查XthElem是否小于或等于diff [i] 。如果确定为true,则在maps的帮助下打印数组的元素。
下面是上述方法的实现:
Python3
# Python3 program to implement
# the above approach
import collections
# Function to swap
# two elements of array
def swap(arr, a, b):
temp = arr[a]
arr[a] = arr[b]
arr[b] = temp
# Function to partition
# the array around x
def partition(arr, l, r, x):
# Traverse array
# from index l to r
for i in range(l, r):
# partition array
# around x
if arr[i] == x:
swap(arr, r, i)
break
x = arr[r]
i = l
# Traverse array
# from index l to r
for j in range(l, r):
if (arr[j] <= x):
swap(arr, i, j)
i += 1
swap(arr, i, r)
return i
# Function to find
# median of arr[]
# from index l to l + n
def findMedian(arr, l, n):
lis = []
for i in range(l, l + n):
lis.append(arr[i])
# Sort the array
lis.sort()
# Return middle element
return lis[n // 2]
# Function to get
# the kth smallest element
def kthSmallest(arr, l, r, k):
# If k is smaller than
# number of elements
# in array
if (k > 0 and
k <= r - l + 1):
# Stores count of
# elements in arr[l..r]
n = r - l + 1
# Divide arr[] in groups
# of size 5, calculate
# median of every group
# and store it in
# median[] array.
median = []
i = 0
while (i < n // 5):
median.append(
findMedian(arr,
l + i * 5, 5))
i += 1
# For last group with
# less than 5 elements
if (i * 5 < n):
median.append(
findMedian(arr,
l + i * 5, n % 5))
i += 1
# If median[] has
# only one element
if i == 1:
medOfMed = median[i - 1]
# Find median of all medians
# using recursive call.
else:
medOfMed = kthSmallest(
median, 0, i - 1, i // 2)
# Stores position of pivot
# element in sorted array
pos = partition(arr, l, r,
medOfMed)
# If position is same as k
if (pos - l == k - 1):
return arr[pos]
# If position is more,
if (pos - l > k - 1):
# recur for left subarray
return kthSmallest(arr, l,
pos - 1, k)
# Else recur for right subarray
return kthSmallest(arr, pos + 1,
r, k - pos + l - 1)
# If k is more than
# number of elements
# in the array
return 999999999999
# Function to print
def closestElements(arr, k, x):
# Stores size of arr
n = len(arr)
# Stores kth smallest
# of the given array
KthElem = kthSmallest(
arr, 0, n - 1, k)
# Store the value of
# abs(KthElem - arr[i])
diff = []
# Create a map to map
# array element to
# abs(KthElem - arr[i])
maps = collections.defaultdict(
list)
for elem in arr:
# Stres the value of
# abs(elem - KthElem)
temp = abs(elem - KthElem)
# map array elements
maps[temp].append(elem)
# append temp
diff.append(temp)
XthElem = kthSmallest(diff, 0,
n - 1, x)
# Store X closest elements
res = set()
# Traverse diff[] array
for dx in diff:
# If absolute difference is
# less than or eqaul to XthElem
if dx <= XthElem:
# Append closest elements
for elem in maps[dx]:
if len(res) < x:
res.add(elem)
return res
# Driver Code
if __name__ == '__main__':
arr = [1, 2, 3, 4, 10, 15]
k = 3
x = 2
# Store X closest elements
res = closestElements(arr, k, x)
# Print X closest elements
for i in res:
print(i, end =" ");
输出:
2 3
时间复杂度: O(N)
辅助空间: O(N)