📌  相关文章
📜  打印最接近数组中第K个最小元素的X个数组元素

📅  最后修改于: 2021-04-23 19:41:32             🧑  作者: Mango

给定两个整数KX和一个包含N个不同元素的数组arr [] ,任务是从给定数组中找到最接近第K最小元素的X个元素。

例子:

天真的方法:解决此问题的最简单方法是使用两指针技术对数组进行排序,并将X个最接近的元素打印到给定数组的第K个最小元素。
时间复杂度: O(N * log N)
辅助空间: O(1)

高效方法:为了优化上述方法,其思想是使用中值选择算法有效地计算给定数组的第K个最小元素的值。请按照以下步骤解决问题:

  • 使用中值选择算法计算给定数组的最小Kth,例如KthElem。
  • 初始化一个数组,比如说diff []来存储arr [i]KthElem的绝对差。
  • 创建一个映射,例如说要映射,以将数组的每个元素映射到当前元素和KthElem的绝对差。
  • 遍历给定的数组,并将arr [i]附加到maps [abs(KthElem – arr [i])]
  • 使用中位数选择算法计算X个最小元素,例如diff []数组的XthElem ,以精确打印X个最接近的项。
  • 最后,遍历diff []数组并检查XthElem是否小于或等于diff [i] 。如果确定为true,则在maps的帮助下打印数组的元素。

下面是上述方法的实现:

Python3
# Python3 program to implement
# the above approach
  
import collections
  
  
# Function to swap
# two elements of array
def swap(arr, a, b):
    temp = arr[a]
    arr[a] = arr[b]
    arr[b] = temp
      
# Function to partition 
# the array around x
def partition(arr, l, r, x):
      
    # Traverse array 
    # from index l to r
    for i in range(l, r):
          
        # partition array
        # around x
        if arr[i] == x:
            swap(arr, r, i)
            break
        
    x = arr[r]
    i = l
      
    # Traverse array 
    # from index l to r 
    for j in range(l, r):
        if (arr[j] <= x):
            swap(arr, i, j)
            i += 1
    swap(arr, i, r)
    return i
  
# Function to find
# median of arr[] 
# from index l to l + n
def findMedian(arr, l, n):
    lis = []
    for i in range(l, l + n):
        lis.append(arr[i])
  
    # Sort the array
    lis.sort()
  
    # Return middle element
    return lis[n // 2]
      
# Function to get 
# the kth smallest element
def kthSmallest(arr, l, r, k):
  
    # If k is smaller than
    # number of elements
    # in array
    if (k > 0 and 
        k <= r - l + 1):
  
        # Stores count of 
        # elements in arr[l..r]
        n = r - l + 1
  
        # Divide arr[] in groups
        # of size 5, calculate 
        # median  of every group
        # and store it in
        # median[] array.
        median = []
  
        i = 0
        while (i < n // 5):
            median.append(
            findMedian(arr, 
                l + i * 5, 5))
            i += 1
  
        # For last group with
        # less than 5 elements
        if (i * 5 < n):
            median.append(
             findMedian(arr, 
                l + i * 5, n % 5))
            i += 1
  
          
        # If median[] has 
        # only one element
        if i == 1:
            medOfMed = median[i - 1]
              
        # Find median of all medians
        # using recursive call.
        else:
            medOfMed = kthSmallest(
             median, 0, i - 1, i // 2)
  
        # Stores position of pivot
        # element in sorted array
        pos = partition(arr, l, r,
                         medOfMed)
  
        # If position is same as k
        if (pos - l == k - 1):
            return arr[pos]
              
        # If position is more,    
        if (pos - l > k - 1): 
              
            # recur for left subarray
            return kthSmallest(arr, l, 
                          pos - 1, k)
  
        # Else recur for right subarray
        return kthSmallest(arr, pos + 1, 
                    r, k - pos + l - 1)
  
    # If k is more than 
    # number of elements
    # in the array
    return 999999999999
  
# Function to print 
def closestElements(arr, k, x):
  
    # Stores size of arr
    n = len(arr)
      
    # Stores kth smallest 
    # of the given array
    KthElem = kthSmallest(
            arr, 0, n - 1, k)
              
    # Store the value of 
    # abs(KthElem - arr[i]) 
    diff = []
      
    # Create a map to map 
    # array element to
    # abs(KthElem - arr[i])
    maps = collections.defaultdict(
                              list)
    for elem in arr:
          
        # Stres the value of 
        # abs(elem - KthElem)
        temp = abs(elem - KthElem)
          
        # map array elements
        maps[temp].append(elem)
          
        # append temp
        diff.append(temp)
  
    XthElem = kthSmallest(diff, 0, 
                        n - 1, x)
      
    # Store X closest elements
    res = set()
      
    # Traverse diff[] array
    for dx in diff:
          
        # If absolute difference is 
        # less than or eqaul to XthElem
        if dx <= XthElem:
              
            # Append closest elements 
            for elem in maps[dx]:
                if len(res) < x:
                  res.add(elem)
    return res
  
  
# Driver Code
if __name__ == '__main__':
  
    arr = [1, 2, 3, 4, 10, 15]
    k = 3
    x = 2
      
    # Store X closest elements
    res = closestElements(arr, k, x)
      
    # Print X closest elements
    for i in res:
        print(i, end =" ");


输出:
2 3

时间复杂度: O(N)
辅助空间: O(N)