标准正态分布是正态分布的特例。当正常随机变量的平均值为0且标准差为1时,就会发生这种情况。标准正态分布的正态随机变量称为标准分数或z分数。
通过以下公式可以将正态分布值转换为标准正态分布值:
Z = (X - u) / s
where:
Z = value on the standard normal distribution
X = value on the original distribution
u = mean of the original distribution
s = standard deviation of the original distribution
代码 –
// Java code to demonstrate the naive method
// of finding Z-value
import java.io.*;
import java.util.*;
class SDN {
public static void main(String[] args)
{
// initialization of variables
double Z, X, s, u;
X = 26;
u = 50;
s = 10;
// master formula
Z = (X - u) / s;
// print the z-value
System.out.println("the Z-value obtained is: " + Z);
}
}
输出 –
the Z-value obtained is: -2.4
生成随机标准正态函数–在Java使用nextGaussian():
nextGaussian()方法用于获取下一个随机,均值为0.0和标准差为1.0的正态分布双精度值。
Declaration :
public double nextGaussian()
Parameters :
NA
Return Value :
The method call returns the random, Normally distributed double value
with mean 0.0 and standard deviation 1.0.
Exception :
NA
以下示例显示Java.util.Random.nextGaussian()的用法:
代码 –
// Java code to demonstrate the working
// of nextGaussian()
import java.util.*;
public class NextGaussian {
public static void main(String[] args)
{
// create random object
Random ran = new Random();
// generating integer
double nxt = ran.nextGaussian();
// Printing the random Number
System.out.println("The next Gaussian value generated is : " + nxt);
}
}
输出 –
The next Gaussian value generated is : -0.24283691098606316