给定一个字符串,构建它的后缀数组
我们已经讨论了以下两种构建后缀数组的方式:
- 朴素的O(n 2 Logn)算法
- 增强型O(nLogn)算法
请通过这些进行基本了解。
在这里,我们将看到如何使用后缀树在线性时间内构建后缀数组。
作为前提,我们必须知道如何以一种或另一种方式构建后缀树。
在这里,我们将使用Ukkonen算法构建后缀树,该算法已在下面进行了讨论:
Ukkonen的后缀树构造–第1部分
Ukkonen的后缀树构造–第2部分
Ukkonen的后缀树构造–第3部分
Ukkonen的后缀树构造–第4部分
Ukkonen的后缀树构造–第5部分
Ukkonen的后缀树构造–第6部分
让我们考虑字符串abcabxabcd。
它的后缀数组为:
0 6 3 1 7 4 2 8 9 5
让我们看下图:
如果我们进行DFS遍历,按字典顺序访问边(我们在其他后缀树应用文章中也进行了相同的遍历),并在叶子上打印后缀索引,则将得到以下结果:
10 0 6 3 1 7 4 2 8 9 5
在字典上,“ $”比[a-zA-Z]小。
后缀索引10对应于带有“ $”标签的边。
除了第一个后缀索引之外,所有其他数字的序列给出字符串的后缀数组。
因此,如果我们有一个字符串的后缀树,则要获得它的后缀数组,我们只需要进行字典顺序的DFS遍历并将所有后缀索引存储在结果后缀数组中,但第一个后缀索引除外。
// A C program to implement Ukkonen's Suffix Tree Construction
// And and then create suffix array in linear time
#include
#include
#include
#define MAX_CHAR 256
struct SuffixTreeNode {
struct SuffixTreeNode *children[MAX_CHAR];
//pointer to other node via suffix link
struct SuffixTreeNode *suffixLink;
/*(start, end) interval specifies the edge, by which the
node is connected to its parent node. Each edge will
connect two nodes, one parent and one child, and
(start, end) interval of a given edge will be stored
in the child node. Lets say there are two nods A and B
connected by an edge with indices (5, 8) then this
indices (5, 8) will be stored in node B. */
int start;
int *end;
/*for leaf nodes, it stores the index of suffix for
the path from root to leaf*/
int suffixIndex;
};
typedef struct SuffixTreeNode Node;
char text[100]; //Input string
Node *root = NULL; //Pointer to root node
/*lastNewNode will point to newly created internal node,
waiting for it's suffix link to be set, which might get
a new suffix link (other than root) in next extension of
same phase. lastNewNode will be set to NULL when last
newly created internal node (if there is any) got it's
suffix link reset to new internal node created in next
extension of same phase. */
Node *lastNewNode = NULL;
Node *activeNode = NULL;
/*activeEdge is represeted as input string character
index (not the character itself)*/
int activeEdge = -1;
int activeLength = 0;
// remainingSuffixCount tells how many suffixes yet to
// be added in tree
int remainingSuffixCount = 0;
int leafEnd = -1;
int *rootEnd = NULL;
int *splitEnd = NULL;
int size = -1; //Length of input string
Node *newNode(int start, int *end)
{
Node *node =(Node*) malloc(sizeof(Node));
int i;
for (i = 0; i < MAX_CHAR; i++)
node->children[i] = NULL;
/*For root node, suffixLink will be set to NULL
For internal nodes, suffixLink will be set to root
by default in current extension and may change in
next extension*/
node->suffixLink = root;
node->start = start;
node->end = end;
/*suffixIndex will be set to -1 by default and
actual suffix index will be set later for leaves
at the end of all phases*/
node->suffixIndex = -1;
return node;
}
int edgeLength(Node *n) {
if(n == root)
return 0;
return *(n->end) - (n->start) + 1;
}
int walkDown(Node *currNode)
{
/*activePoint change for walk down (APCFWD) using
Skip/Count Trick (Trick 1). If activeLength is greater
than current edge length, set next internal node as
activeNode and adjust activeEdge and activeLength
accordingly to represent same activePoint*/
if (activeLength >= edgeLength(currNode))
{
activeEdge += edgeLength(currNode);
activeLength -= edgeLength(currNode);
activeNode = currNode;
return 1;
}
return 0;
}
void extendSuffixTree(int pos)
{
/*Extension Rule 1, this takes care of extending all
leaves created so far in tree*/
leafEnd = pos;
/*Increment remainingSuffixCount indicating that a
new suffix added to the list of suffixes yet to be
added in tree*/
remainingSuffixCount++;
/*set lastNewNode to NULL while starting a new phase,
indicating there is no internal node waiting for
it's suffix link reset in current phase*/
lastNewNode = NULL;
//Add all suffixes (yet to be added) one by one in tree
while(remainingSuffixCount > 0) {
if (activeLength == 0)
activeEdge = pos; //APCFALZ
// There is no outgoing edge starting with
// activeEdge from activeNode
if (activeNode->children] == NULL)
{
//Extension Rule 2 (A new leaf edge gets created)
activeNode->children] =
newNode(pos, &leafEnd);
/*A new leaf edge is created in above line starting
from an existng node (the current activeNode), and
if there is any internal node waiting for it's suffix
link get reset, point the suffix link from that last
internal node to current activeNode. Then set lastNewNode
to NULL indicating no more node waiting for suffix link
reset.*/
if (lastNewNode != NULL)
{
lastNewNode->suffixLink = activeNode;
lastNewNode = NULL;
}
}
// There is an outgoing edge starting with activeEdge
// from activeNode
else
{
// Get the next node at the end of edge starting
// with activeEdge
Node *next = activeNode->children];
if (walkDown(next))//Do walkdown
{
//Start from next node (the new activeNode)
continue;
}
/*Extension Rule 3 (current character being processed
is already on the edge)*/
if (text[next->start + activeLength] == text[pos])
{
//If a newly created node waiting for it's
//suffix link to be set, then set suffix link
//of that waiting node to current active node
if(lastNewNode != NULL && activeNode != root)
{
lastNewNode->suffixLink = activeNode;
lastNewNode = NULL;
}
//APCFER3
activeLength++;
/*STOP all further processing in this phase
and move on to next phase*/
break;
}
/*We will be here when activePoint is in middle of
the edge being traversed and current character
being processed is not on the edge (we fall off
the tree). In this case, we add a new internal node
and a new leaf edge going out of that new node. This
is Extension Rule 2, where a new leaf edge and a new
internal node get created*/
splitEnd = (int*) malloc(sizeof(int));
*splitEnd = next->start + activeLength - 1;
//New internal node
Node *split = newNode(next->start, splitEnd);
activeNode->children] = split;
//New leaf coming out of new internal node
split->children] = newNode(pos, &leafEnd);
next->start += activeLength;
split->children] = next;
/*We got a new internal node here. If there is any
internal node created in last extensions of same
phase which is still waiting for it's suffix link
reset, do it now.*/
if (lastNewNode != NULL)
{
/*suffixLink of lastNewNode points to current newly
created internal node*/
lastNewNode->suffixLink = split;
}
/*Make the current newly created internal node waiting
for it's suffix link reset (which is pointing to root
at present). If we come across any other internal node
(existing or newly created) in next extension of same
phase, when a new leaf edge gets added (i.e. when
Extension Rule 2 applies is any of the next extension
of same phase) at that point, suffixLink of this node
will point to that internal node.*/
lastNewNode = split;
}
/* One suffix got added in tree, decrement the count of
suffixes yet to be added.*/
remainingSuffixCount--;
if (activeNode == root && activeLength > 0) //APCFER2C1
{
activeLength--;
activeEdge = pos - remainingSuffixCount + 1;
}
else if (activeNode != root) //APCFER2C2
{
activeNode = activeNode->suffixLink;
}
}
}
void print(int i, int j)
{
int k;
for (k=i; k<=j; k++)
printf("%c", text[k]);
}
//Print the suffix tree as well along with setting suffix index
//So tree will be printed in DFS manner
//Each edge along with it's suffix index will be printed
void setSuffixIndexByDFS(Node *n, int labelHeight)
{
if (n == NULL) return;
if (n->start != -1) //A non-root node
{
//Print the label on edge from parent to current node
//Uncomment below line to print suffix tree
// print(n->start, *(n->end));
}
int leaf = 1;
int i;
for (i = 0; i < MAX_CHAR; i++)
{
if (n->children[i] != NULL)
{
//Uncomment below two lines to print suffix index
// if (leaf == 1 && n->start != -1)
// printf(" [%d]\n", n->suffixIndex);
//Current node is not a leaf as it has outgoing
//edges from it.
leaf = 0;
setSuffixIndexByDFS(n->children[i], labelHeight +
edgeLength(n->children[i]));
}
}
if (leaf == 1)
{
n->suffixIndex = size - labelHeight;
//Uncomment below line to print suffix index
//printf(" [%d]\n", n->suffixIndex);
}
}
void freeSuffixTreeByPostOrder(Node *n)
{
if (n == NULL)
return;
int i;
for (i = 0; i < MAX_CHAR; i++)
{
if (n->children[i] != NULL)
{
freeSuffixTreeByPostOrder(n->children[i]);
}
}
if (n->suffixIndex == -1)
free(n->end);
free(n);
}
/*Build the suffix tree and print the edge labels along with
suffixIndex. suffixIndex for leaf edges will be >= 0 and
for non-leaf edges will be -1*/
void buildSuffixTree()
{
size = strlen(text);
int i;
rootEnd = (int*) malloc(sizeof(int));
*rootEnd = - 1;
/*Root is a special node with start and end indices as -1,
as it has no parent from where an edge comes to root*/
root = newNode(-1, rootEnd);
activeNode = root; //First activeNode will be root
for (i=0; isuffixIndex == -1) //If it is internal node
{
for (i = 0; i < MAX_CHAR; i++)
{
if(n->children[i] != NULL)
{
doTraversal(n->children[i], suffixArray, idx);
}
}
}
//If it is Leaf node other than "$" label
else if(n->suffixIndex > -1 && n->suffixIndex < size)
{
suffixArray[(*idx)++] = n->suffixIndex;
}
}
void buildSuffixArray(int suffixArray[])
{
int i = 0;
for(i=0; i< size; i++)
suffixArray[i] = -1;
int idx = 0;
doTraversal(root, suffixArray, &idx);
printf("Suffix Array for String ");
for(i=0; i
输出:
Suffix Array for String banana is: 5 3 1 0 4 2
Suffix Array for String GEEKSFORGEEKS is: 9 1 10 2 5 8 0 11 3 6 7 12 4
Suffix Array for String AAAAAAAAAA is: 9 8 7 6 5 4 3 2 1 0
Suffix Array for String ABCDEFG is: 0 1 2 3 4 5 6
Suffix Array for String ABABABA is: 6 4 2 0 5 3 1
Suffix Array for String abcabxabcd is: 0 6 3 1 7 4 2 8 9 5
Suffix Array for String CCAAACCCGATTA is: 12 2 3 4 9 1 0 5 6 7 8 11 10
Ukkonen的后缀树构造需要O(N)的时间和空间来构建长度为N的字符串的后缀树,此后,遍历树需要O(N)来构建后缀数组。
因此,总的来说,它在时间和空间上是线性的。
您能看到为什么遍历是O(N)吗?因为长度为N的字符串的后缀树最多具有N-1个内部节点和N个叶。这些节点的遍历可以在O(N)中完成。
我们已经发布了更多有关后缀树应用程序的文章:
- 后缀树应用程序1 –子字符串检查
- 后缀树应用程序2 –搜索所有模式
- 后缀树应用程序3 –最长重复子串
- 广义后缀树1
- 后缀树应用程序5 –最长公共子串
- 后缀树应用6 –最长回文子串