📜  堆排序

📅  最后修改于: 2021-04-29 01:45:14             🧑  作者: Mango

堆排序是基于二进制堆数据结构的基于比较的排序技术。这类似于选择排序,在该排序中,我们首先找到最小元素并将最小元素放在开头。对于其余元素,我们重复相同的过程。

什么是二进制堆?
让我们首先定义一个完整的二叉树。一个完整的二叉树是一个二叉树,其中除最后一个级别外,每个级别都被完全填充,并且所有节点都尽可能地靠左(来源Wikipedia)
二进制堆是完整的二进制树,其中项以特殊顺序存储,使得父节点中的值大于(或小于)其两个子节点中的值。前者称为最大堆,后者称为最小堆。堆可以由二叉树或数组表示。

为什么要使用基于数组的二进制堆表示形式?
由于Binary Heap是完整的Binary Tree,因此可以很容易地将其表示为数组,并且基于数组的表示节省空间。如果父节点存储在索引I处,则左子节点可以通过2 * I + 1计算,右子节点可以通过2 * I + 2计算(假定索引从0开始)。

用于按升序排序的堆排序算法:
1.根据输入数据构建最大堆。
2.此时,最大的项目存储在堆的根目录中。将其替换为堆的最后一项,然后将堆的大小减小1。最后,堆放树的根。
3.当堆的大小大于1时,请重复步骤2。

如何建立堆?
只有在其子节点已被堆积的情况下,堆过程才能应用于该节点。因此,必须按自下而上的顺序执行堆化。
让我们借助示例来理解:

Input data: 4, 10, 3, 5, 1
         4(0)
        /   \
     10(1)   3(2)
    /   \
 5(3)    1(4)

The numbers in bracket represent the indices in the array 
representation of data.

Applying heapify procedure to index 1:
         4(0)
        /   \
    10(1)    3(2)
    /   \
5(3)    1(4)

Applying heapify procedure to index 0:
        10(0)
        /  \
     5(1)  3(2)
    /   \
 4(3)    1(4)
The heapify procedure calls itself recursively to build heap
 in top down manner.
C++
// C++ program for implementation of Heap Sort
#include 
 
using namespace std;
 
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify(int arr[], int n, int i)
{
    int largest = i; // Initialize largest as root
    int l = 2 * i + 1; // left = 2*i + 1
    int r = 2 * i + 2; // right = 2*i + 2
 
    // If left child is larger than root
    if (l < n && arr[l] > arr[largest])
        largest = l;
 
    // If right child is larger than largest so far
    if (r < n && arr[r] > arr[largest])
        largest = r;
 
    // If largest is not root
    if (largest != i) {
        swap(arr[i], arr[largest]);
 
        // Recursively heapify the affected sub-tree
        heapify(arr, n, largest);
    }
}
 
// main function to do heap sort
void heapSort(int arr[], int n)
{
    // Build heap (rearrange array)
    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, n, i);
 
    // One by one extract an element from heap
    for (int i = n - 1; i > 0; i--) {
        // Move current root to end
        swap(arr[0], arr[i]);
 
        // call max heapify on the reduced heap
        heapify(arr, i, 0);
    }
}
 
/* A utility function to print array of size n */
void printArray(int arr[], int n)
{
    for (int i = 0; i < n; ++i)
        cout << arr[i] << " ";
    cout << "\n";
}
 
// Driver code
int main()
{
    int arr[] = { 12, 11, 13, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    heapSort(arr, n);
 
    cout << "Sorted array is \n";
    printArray(arr, n);
}


Java
// Java program for implementation of Heap Sort
public class HeapSort {
    public void sort(int arr[])
    {
        int n = arr.length;
 
        // Build heap (rearrange array)
        for (int i = n / 2 - 1; i >= 0; i--)
            heapify(arr, n, i);
 
        // One by one extract an element from heap
        for (int i = n - 1; i > 0; i--) {
            // Move current root to end
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
 
            // call max heapify on the reduced heap
            heapify(arr, i, 0);
        }
    }
 
    // To heapify a subtree rooted with node i which is
    // an index in arr[]. n is size of heap
    void heapify(int arr[], int n, int i)
    {
        int largest = i; // Initialize largest as root
        int l = 2 * i + 1; // left = 2*i + 1
        int r = 2 * i + 2; // right = 2*i + 2
 
        // If left child is larger than root
        if (l < n && arr[l] > arr[largest])
            largest = l;
 
        // If right child is larger than largest so far
        if (r < n && arr[r] > arr[largest])
            largest = r;
 
        // If largest is not root
        if (largest != i) {
            int swap = arr[i];
            arr[i] = arr[largest];
            arr[largest] = swap;
 
            // Recursively heapify the affected sub-tree
            heapify(arr, n, largest);
        }
    }
 
    /* A utility function to print array of size n */
    static void printArray(int arr[])
    {
        int n = arr.length;
        for (int i = 0; i < n; ++i)
            System.out.print(arr[i] + " ");
        System.out.println();
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 12, 11, 13, 5, 6, 7 };
        int n = arr.length;
 
        HeapSort ob = new HeapSort();
        ob.sort(arr);
 
        System.out.println("Sorted array is");
        printArray(arr);
    }
}


Python
# Python program for implementation of heap Sort
 
# To heapify subtree rooted at index i.
# n is size of heap
 
 
def heapify(arr, n, i):
    largest = i  # Initialize largest as root
    l = 2 * i + 1     # left = 2*i + 1
    r = 2 * i + 2     # right = 2*i + 2
 
    # See if left child of root exists and is
    # greater than root
    if l < n and arr[largest] < arr[l]:
        largest = l
 
    # See if right child of root exists and is
    # greater than root
    if r < n and arr[largest] < arr[r]:
        largest = r
 
    # Change root, if needed
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]  # swap
 
        # Heapify the root.
        heapify(arr, n, largest)
 
# The main function to sort an array of given size
 
 
def heapSort(arr):
    n = len(arr)
 
    # Build a maxheap.
    for i in range(n//2 - 1, -1, -1):
        heapify(arr, n, i)
 
    # One by one extract elements
    for i in range(n-1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]  # swap
        heapify(arr, i, 0)
 
 
# Driver code
arr = [12, 11, 13, 5, 6, 7]
heapSort(arr)
n = len(arr)
print("Sorted array is")
for i in range(n):
    print("%d" % arr[i]),
# This code is contributed by Mohit Kumra


C#
// C# program for implementation of Heap Sort
using System;
 
public class HeapSort {
    public void sort(int[] arr)
    {
        int n = arr.Length;
 
        // Build heap (rearrange array)
        for (int i = n / 2 - 1; i >= 0; i--)
            heapify(arr, n, i);
 
        // One by one extract an element from heap
        for (int i = n - 1; i > 0; i--) {
            // Move current root to end
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
 
            // call max heapify on the reduced heap
            heapify(arr, i, 0);
        }
    }
 
    // To heapify a subtree rooted with node i which is
    // an index in arr[]. n is size of heap
    void heapify(int[] arr, int n, int i)
    {
        int largest = i; // Initialize largest as root
        int l = 2 * i + 1; // left = 2*i + 1
        int r = 2 * i + 2; // right = 2*i + 2
 
        // If left child is larger than root
        if (l < n && arr[l] > arr[largest])
            largest = l;
 
        // If right child is larger than largest so far
        if (r < n && arr[r] > arr[largest])
            largest = r;
 
        // If largest is not root
        if (largest != i) {
            int swap = arr[i];
            arr[i] = arr[largest];
            arr[largest] = swap;
 
            // Recursively heapify the affected sub-tree
            heapify(arr, n, largest);
        }
    }
 
    /* A utility function to print array of size n */
    static void printArray(int[] arr)
    {
        int n = arr.Length;
        for (int i = 0; i < n; ++i)
            Console.Write(arr[i] + " ");
        Console.Read();
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 12, 11, 13, 5, 6, 7 };
        int n = arr.Length;
 
        HeapSort ob = new HeapSort();
        ob.sort(arr);
 
        Console.WriteLine("Sorted array is");
        printArray(arr);
    }
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP
 $arr[$largest])
        $largest = $l;
 
    // If right child is larger than largest so far
    if ($r < $n && $arr[$r] > $arr[$largest])
        $largest = $r;
 
    // If largest is not root
    if ($largest != $i)
    {
        $swap = $arr[$i];
        $arr[$i] = $arr[$largest];
        $arr[$largest] = $swap;
 
        // Recursively heapify the affected sub-tree
        heapify($arr, $n, $largest);
    }
}
 
// main function to do heap sort
function heapSort(&$arr, $n)
{
    // Build heap (rearrange array)
    for ($i = $n / 2 - 1; $i >= 0; $i--)
        heapify($arr, $n, $i);
 
    // One by one extract an element from heap
    for ($i = $n-1; $i > 0; $i--)
    {
        // Move current root to end
        $temp = $arr[0];
            $arr[0] = $arr[$i];
            $arr[$i] = $temp;
 
        // call max heapify on the reduced heap
        heapify($arr, $i, 0);
    }
}
 
/* A utility function to print array of size n */
function printArray(&$arr, $n)
{
    for ($i = 0; $i < $n; ++$i)
        echo ($arr[$i]." ") ;
         
}
 
// Driver program
    $arr = array(12, 11, 13, 5, 6, 7);
    $n = sizeof($arr)/sizeof($arr[0]);
 
    heapSort($arr, $n);
 
    echo 'Sorted array is ' . "\n";
     
    printArray($arr , $n);
 
// This code is contributed by Shivi_Aggarwal
?>


输出
Sorted array is 
5 6 7 11 12 13 

这是以前的C代码供参考。

笔记:
堆排序是一种就地算法。
它的典型实现方式不稳定,但是可以使其稳定(请参阅此)

时间复杂度: heapify的时间复杂度为O(Logn)。 createAndBuildHeap()的时间复杂度为O(n),堆排序的整体时间复杂度为O(nLogn)。

HeapSort的应用
1.对几乎排序(或K排序)的数组进行排序
2.数组中的k个最大(或最小)元素
堆排序算法的用途受到限制,因为Quicksort和Mergesort在实践中更好。但是,堆数据结构本身已被大量使用。查看堆数据结构的应用
https://youtu.be/MtQL_ll5KhQ
快照:

场景00505

场景

scene01081

scene01297

场景01513

scene02449

堆排序测验

GeeksforGeeks / GeeksQuiz上的其他排序算法:
快速排序,选择排序,气泡排序,插入排序,合并排序,堆排序,快速排序,基数排序,计数排序,桶排序,ShellSort,梳状排序,信鸽排序

排序的编码实践。