使用 Pandas 中的查询方法使用复杂条件进行选择
在本文中,让我们讨论如何使用 Pandas 中的 Query() 方法选择复杂条件。在 Pandas for Selecting with complex conditions using the query 中,首先,我们在 pandas.Dataframe() 的帮助下创建数据框并将其存储为一个变量,然后在 query() 方法的帮助下我们可以选择复杂的标准。在 pandas.Dataframe.loc() 的帮助下,我们可以通过传递数据帧的索引来查找数据帧的详细信息。
示例 1:
Python3
import pandas as pd
df = pd.DataFrame([[10, 20, 30, 40], [70, 14, 21, 80],
[55, 15, 80, 12]],
columns=['GFG_USER_1', 'GFG_USER_2',
'GFG_USER_3', 'GFG_USER_4'],
index=['Practice1', 'Practice2', 'Practice3'])
print(df, "\n")
# Filter data using query method
df1 = df.loc[df.query(
'GFG_USER_1 <= 80 & GFG_USER_2 > 10 & \
GFG_USER_3 < 50 & GFG_USER_4 == 80').index]
print(df1)
Python3
import pandas as pd
df = pd.DataFrame([[100, 200, 300], [70, 140, 210],
[55, 150, 180]],
columns=['PAK', 'AUS', 'IND'],
index=['Match1', 'Match2', 'Match3'])
print(df, "\n")
# Filter data using query method
df1 = df.loc[df.query('PAK <= 80 & AUS > 100 & IND < 250').index]
print(df1)
Python3
import pandas as pd
df = pd.DataFrame([[1000, 2000, 3000, 4000], [7000, 1400, 2100, 2800],
[5500, 1500, 800, 1200]],
columns=['DSA_Self_Paced', 'OOPS', 'DBMS', 'System_design'],
index=['Sale1', 'Sale2', 'Sale3'])
print(df, "\n")
# Filter data using query method
df1 = df.loc[df.query(
'DSA_Self_Paced <= 6000 & OOPS > 1400 & DBMS < 1500 \
& System_design == 1200').index]
print(df1)
输出:
示例2:
蟒蛇3
import pandas as pd
df = pd.DataFrame([[100, 200, 300], [70, 140, 210],
[55, 150, 180]],
columns=['PAK', 'AUS', 'IND'],
index=['Match1', 'Match2', 'Match3'])
print(df, "\n")
# Filter data using query method
df1 = df.loc[df.query('PAK <= 80 & AUS > 100 & IND < 250').index]
print(df1)
输出:
示例 3:
蟒蛇3
import pandas as pd
df = pd.DataFrame([[1000, 2000, 3000, 4000], [7000, 1400, 2100, 2800],
[5500, 1500, 800, 1200]],
columns=['DSA_Self_Paced', 'OOPS', 'DBMS', 'System_design'],
index=['Sale1', 'Sale2', 'Sale3'])
print(df, "\n")
# Filter data using query method
df1 = df.loc[df.query(
'DSA_Self_Paced <= 6000 & OOPS > 1400 & DBMS < 1500 \
& System_design == 1200').index]
print(df1)
输出: