快速选择是一种选择算法,用于在无序列表中找到第k个最小的元素。它与快速排序排序算法有关。
例子:
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 3
Output: 7
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 4
Output: 10
该算法类似于QuickSort。不同之处在于,它只对包含第k个最小元素的部分重复出现,而不是对两侧都重复出现。逻辑很简单,如果分区元素的索引大于k,则针对左部分递归。如果index与k相同,则找到第k个最小元素,然后返回。如果索引小于k,则返回正确的部分。这将预期的复杂度从O(n log n)降低到O(n),最坏的情况是O(n ^ 2)。
function quickSelect(list, left, right, k)
if left = right
return list[left]
Select a pivotIndex between left and right
pivotIndex := partition(list, left, right,
pivotIndex)
if k = pivotIndex
return list[k]
else if k < pivotIndex
right := pivotIndex - 1
else
left := pivotIndex + 1
C++14
// CPP program for implementation of QuickSelect
#include
using namespace std;
// Standard partition process of QuickSort().
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(arr[i], arr[j]);
i++;
}
}
swap(arr[i], arr[r]);
return i;
}
// This function returns k'th smallest
// element in arr[l..r] using QuickSort
// based method. ASSUMPTION: ALL ELEMENTS
// IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of
// elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int index = partition(arr, l, r);
// If position is same as k
if (index - l == k - 1)
return arr[index];
// If position is more, recur
// for left subarray
if (index - l > k - 1)
return kthSmallest(arr, l, index - 1, k);
// Else recur for right subarray
return kthSmallest(arr, index + 1, r,
k - index + l - 1);
}
// If k is more than number of
// elements in array
return INT_MAX;
}
// Driver program to test above methods
int main()
{
int arr[] = { 10, 4, 5, 8, 6, 11, 26 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
cout << "K-th smallest element is "
<< kthSmallest(arr, 0, n - 1, k);
return 0;
}
Java
// Java program of Quick Select
import java.util.Arrays;
class GFG {
// partition function similar to quick sort
// Considers last element as pivot and adds
// elements with less value to the left and
// high value to the right and also changes
// the pivot position to its respective position
// in the final array.
public static int partition(int[] arr, int low,
int high)
{
int pivot = arr[high], pivotloc = low;
for (int i = low; i <= high; i++) {
// inserting elements of less value
// to the left of the pivot location
if (arr[i] < pivot) {
int temp = arr[i];
arr[i] = arr[pivotloc];
arr[pivotloc] = temp;
pivotloc++;
}
}
// swapping pivot to the final pivot location
int temp = arr[high];
arr[high] = arr[pivotloc];
arr[pivotloc] = temp;
return pivotloc;
}
// finds the kth position (of the sorted array)
// in a given unsorted array i.e this function
// can be used to find both kth largest and
// kth smallest element in the array.
// ASSUMPTION: all elements in arr[] are distinct
public static int kthSmallest(int[] arr, int low,
int high, int k)
{
// find the partition
int partition = partition(arr, low, high);
// if partition value is equal to the kth position,
// return value at k.
if (partition == k - 1)
return arr[partition];
// if partition value is less than kth position,
// search right side of the array.
else if (partition < k - 1)
return kthSmallest(arr, partition + 1, high, k);
// if partition value is more than kth position,
// search left side of the array.
else
return kthSmallest(arr, low, partition - 1, k);
}
// Driver Code
public static void main(String[] args)
{
int[] array = new int[] { 10, 4, 5, 8, 6, 11, 26 };
int[] arraycopy
= new int[] { 10, 4, 5, 8, 6, 11, 26 };
int kPosition = 3;
int length = array.length;
if (kPosition > length) {
System.out.println("Index out of bound");
}
else {
// find kth smallest value
System.out.println(
"K-th smallest element in array : "
+ kthSmallest(arraycopy, 0, length - 1,
kPosition - 1));
}
}
}
// This code is contributed by Saiteja Pamulapati
Python3
# Python3 program of Quick Select
# Standard partition process of QuickSort().
# It considers the last element as pivot
# and moves all smaller element to left of
# it and greater elements to right
def partition(arr, l, r):
x = arr[r]
i = l
for j in range(l, r):
if arr[j] <= x:
arr[i], arr[j] = arr[j], arr[i]
i += 1
arr[i], arr[r] = arr[r], arr[i]
return i
# finds the kth position (of the sorted array)
# in a given unsorted array i.e this function
# can be used to find both kth largest and
# kth smallest element in the array.
# ASSUMPTION: all elements in arr[] are distinct
def kthSmallest(arr, l, r, k):
# if k is smaller than number of
# elements in array
if (k > 0 and k <= r - l + 1):
# Partition the array around last
# element and get position of pivot
# element in sorted array
index = partition(arr, l, r)
# if position is same as k
if (index - l == k - 1):
return arr[index]
# If position is more, recur
# for left subarray
if (index - l > k - 1):
return kthSmallest(arr, l, index - 1, k)
# Else recur for right subarray
return kthSmallest(arr, index + 1, r,
k - index + l - 1)
return INT_MAX
# Driver Code
arr = [ 10, 4, 5, 8, 6, 11, 26 ]
n = len(arr)
k = 3
print("K-th smallest element is ", end = "")
print(kthSmallest(arr, 0, n - 1, k))
# This code is contributed by Muskan Kalra.
C#
// C# program of Quick Select
using System;
class GFG
{
// partition function similar to quick sort
// Considers last element as pivot and adds
// elements with less value to the left and
// high value to the right and also changes
// the pivot position to its respective position
// in the readonly array.
static int partitions(int []arr,int low, int high)
{
int pivot = arr[high], pivotloc = low, temp;
for (int i = low; i <= high; i++)
{
// inserting elements of less value
// to the left of the pivot location
if(arr[i] < pivot)
{
temp = arr[i];
arr[i] = arr[pivotloc];
arr[pivotloc] = temp;
pivotloc++;
}
}
// swapping pivot to the readonly pivot location
temp = arr[high];
arr[high] = arr[pivotloc];
arr[pivotloc] = temp;
return pivotloc;
}
// finds the kth position (of the sorted array)
// in a given unsorted array i.e this function
// can be used to find both kth largest and
// kth smallest element in the array.
// ASSUMPTION: all elements in []arr are distinct
static int kthSmallest(int[] arr, int low,
int high, int k)
{
// find the partition
int partition = partitions(arr,low,high);
// if partition value is equal to the kth position,
// return value at k.
if(partition == k)
return arr[partition];
// if partition value is less than kth position,
// search right side of the array.
else if(partition < k )
return kthSmallest(arr, partition + 1, high, k );
// if partition value is more than kth position,
// search left side of the array.
else
return kthSmallest(arr, low, partition - 1, k );
}
// Driver Code
public static void Main(String[] args)
{
int[] array = {10, 4, 5, 8, 6, 11, 26};
int[] arraycopy = {10, 4, 5, 8, 6, 11, 26};
int kPosition = 3;
int length = array.Length;
if(kPosition > length)
{
Console.WriteLine("Index out of bound");
}
else
{
// find kth smallest value
Console.WriteLine("K-th smallest element in array : " +
kthSmallest(arraycopy, 0, length - 1,
kPosition - 1));
}
}
}
// This code is contributed by 29AjayKumar
输出:
K-th smallest element is 6
重要事项:
- 与快速排序类似,它在实践中速度很快,但在最坏情况下的性能却很差。它用于
- 分区过程与QuickSort相同,只是递归代码有所不同。
- 有一种算法可以在最坏的情况下找到O(n)中的第k个最小元素,但QuickSelect的平均效果更好。