📜  Python中的 numpy.append()

📅  最后修改于: 2022-05-13 01:54:44.240000             🧑  作者: Mango

Python中的 numpy.append()

numpy.append()在数组末尾沿提到的轴附加值
句法 :

numpy.append(array, values, axis = None)

参数 :

array   : [array_like]Input array. 
values  : [array_like]values to be added in the arr. Values should be 
     shaped so that arr[...,obj,...] = values. If the axis is defined values can be of any
     shape as it will be flattened before use.
axis    : Axis along which we want to insert the values. By default, array
     is flattened.    

返回 :

An copy of array with values being appended at the end as per the mentioned object
along a given axis. 

代码 1:附加数组

# Python Program illustrating
# numpy.append()
  
import numpy as geek
  
#Working on 1D
arr1 = geek.arange(5)
print("1D arr1 : ", arr1)
print("Shape : ", arr1.shape)
  
  
arr2 = geek.arange(8, 12)
print("\n1D arr2 : ", arr2)
print("Shape : ", arr2.shape)
  
  
# appending the arrays
arr3 = geek.append(arr1, arr2)
print("\nAppended arr3 : ", arr3)

输出 :

1D arr1 :  [0 1 2 3 4]
Shape :  (5,)

1D arr2 :  [ 8  9 10 11]
Shape :  (4,)

Appended arr3 :  [ 0  1  2  3  4  8  9 10 11]

代码 2 : 玩轴

# Python Program illustrating
# numpy.append()
  
import numpy as geek
  
#Working on 1D
arr1 = geek.arange(8).reshape(2, 4)
print("2D arr1 : \n", arr1)
print("Shape : ", arr1.shape)
  
  
arr2 = geek.arange(8, 16).reshape(2, 4)
print("\n2D arr2 : \n", arr2)
print("Shape : ", arr2.shape)
  
  
# appending the arrays
arr3 = geek.append(arr1, arr2)
print("\nAppended arr3 by flattened : ", arr3)
  
# appending the arrays with axis = 0
arr3 = geek.append(arr1, arr2, axis = 0)
print("\nAppended arr3 with axis 0 : \n", arr3)
  
# appending the arrays with axis = 1
arr3 = geek.append(arr1, arr2, axis = 1)
print("\nAppended arr3 with axis 1 : \n", arr3)

输出 :

2D arr1 : 
 [[0 1 2 3]
 [4 5 6 7]]
Shape :  (2, 4)

2D arr2 : 
 [[ 8  9 10 11]
 [12 13 14 15]]
Shape :  (2, 4)

Appended arr3 by flattened :  [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15]

Appended arr3 with axis 0 : 
 [[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]

Appended arr3 with axis 1 : 
 [[ 0  1  2  3  8  9 10 11]
 [ 4  5  6  7 12 13 14 15]]