Python – tensorflow.math.digamma()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
digamma()用于计算 Lgamma 的逐元素导数,即 Gamma(x) 绝对值的对数。
Syntax: tensorflow.math.digamma( x, name)
Parameters:
- x: It’s the input tensor. Allowed dtypes are bfloat16, half, float32, float64.
- name(optional): It defines the name for the operation.
Returns: It returns a tensor of same dtype as x.
示例 1:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
# Printing the input tensor
print('Input: ', a)
# Calculating digamma
res = tf.math.digamma(x = a)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
# Calculating digamma
res = tf.math.digamma(x = a)
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.math.digamma')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()
输出:
Input: tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
Result: tf.Tensor([-0.57721566 0.42278434 0.92278434 1.25611767 1.50611767], shape=(5, ), dtype=float64)
示例 2:可视化
Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
# Calculating digamma
res = tf.math.digamma(x = a)
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.math.digamma')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()
输出: