给定一个尺寸为N * M的矩阵。任务是找到从arr [0] [0]到arr [N – 1] [M – 1]以及从arr [N – 1] [M – 1]返回arr [0] [0]的最大路径总和] 。
在从arr [0] [0]到arr [N – 1] [M – 1]的路径上,您可以在上下方向上移动,也可以在从arr [N – 1] [M – 1]到arr的路径上移动[0] [0] ,您可以上下移动。
注意:两条路径都不能相等,即必须至少有一个单元格arr [i] [j] ,这在两条路径中都不相同。
例子:
输入: mat [] [] = {{1,0,3,-1},{3,5,1,-2},{-2,0,1,1},{2,1,-1, 1}}输出: 16 从arr [0] [0]到arr [3] [3]的路径上的最大和= 1 + 3 + 5 +1 +1 +1 + 1 +1 = 13从arr [3] [3]到arr的路径上的最大和[0] [0] = 3总路径总和= 13 + 3 = 16输入: mat [] [] = {{1,0},{1,1}}输出: 3
方法:该问题与“最小成本路径”问题有点相似,不同之处在于在本问题中,将找到两条总和最大的路径。另外,我们需要注意两条路径上的单元仅对总和贡献一次。
首先要注意的是,从arr [N – 1] [M – 1]到arr [0] [0]的路径不过是从arr [0] [0]到arr [N – 1] [M – 1] 。因此,我们必须找到从arr [0] [0]到arr [N – 1] [M – 1]的两条路径,且总和最大。
以与“最小成本路径”问题相似的方式进行处理,我们从arr [0] [0]一起开始两条路径,然后递归到矩阵的相邻像元,直到达到arr [N – 1] [M – 1]为止。为了确保一个单元格贡献不超过一次,我们检查两条路径上的当前单元格是否相同。如果它们相同,则仅将其添加到答案一次。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Input matrix
int n = 4, m = 4;
int arr[4][4] = { { 1, 0, 3, -1 },
{ 3, 5, 1, -2 },
{ -2, 0, 1, 1 },
{ 2, 1, -1, 1 } };
// DP matrix
int cache[5][5][5];
// Function to return the sum of the cells
// arr[i1][j1] and arr[i2][j2]
int sum(int i1, int j1, int i2, int j2)
{
if (i1 == i2 && j1 == j2) {
return arr[i1][j1];
}
return arr[i1][j1] + arr[i2][j2];
}
// Recursive function to return the
// required maximum cost path
int maxSumPath(int i1, int j1, int i2)
{
// Column number of second path
int j2 = i1 + j1 - i2;
// Base Case
if (i1 >= n || i2 >= n || j1 >= m || j2 >= m) {
return 0;
}
// If already calculated, return from DP matrix
if (cache[i1][j1][i2] != -1) {
return cache[i1][j1][i2];
}
int ans = INT_MIN;
// Recurring for neighbouring cells of both paths together
ans = max(ans, maxSumPath(i1 + 1, j1, i2 + 1) + sum(i1, j1, i2, j2));
ans = max(ans, maxSumPath(i1, j1 + 1, i2) + sum(i1, j1, i2, j2));
ans = max(ans, maxSumPath(i1, j1 + 1, i2 + 1) + sum(i1, j1, i2, j2));
ans = max(ans, maxSumPath(i1 + 1, j1, i2) + sum(i1, j1, i2, j2));
// Saving result to the DP matrix for current state
cache[i1][j1][i2] = ans;
return ans;
}
// Driver code
int main()
{
memset(cache, -1, sizeof(cache));
cout << maxSumPath(0, 0, 0);
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG
{
// Input matrix
static int n = 4, m = 4;
static int arr[][] = { { 1, 0, 3, -1 },
{ 3, 5, 1, -2 },
{ -2, 0, 1, 1 },
{ 2, 1, -1, 1 } };
// DP matrix
static int cache[][][] = new int[5][5][5];
// Function to return the sum of the cells
// arr[i1][j1] and arr[i2][j2]
static int sum(int i1, int j1, int i2, int j2)
{
if (i1 == i2 && j1 == j2)
{
return arr[i1][j1];
}
return arr[i1][j1] + arr[i2][j2];
}
// Recursive function to return the
// required maximum cost path
static int maxSumPath(int i1, int j1, int i2)
{
// Column number of second path
int j2 = i1 + j1 - i2;
// Base Case
if (i1 >= n || i2 >= n || j1 >= m || j2 >= m)
{
return 0;
}
// If already calculated, return from DP matrix
if (cache[i1][j1][i2] != -1)
{
return cache[i1][j1][i2];
}
int ans = Integer.MIN_VALUE;
// Recurring for neighbouring cells of both paths together
ans = Math.max(ans, maxSumPath(i1 + 1, j1, i2 + 1) + sum(i1, j1, i2, j2));
ans = Math.max(ans, maxSumPath(i1, j1 + 1, i2) + sum(i1, j1, i2, j2));
ans = Math.max(ans, maxSumPath(i1, j1 + 1, i2 + 1) + sum(i1, j1, i2, j2));
ans = Math.max(ans, maxSumPath(i1 + 1, j1, i2) + sum(i1, j1, i2, j2));
// Saving result to the DP matrix for current state
cache[i1][j1][i2] = ans;
return ans;
}
// Driver code
public static void main(String args[])
{
//set initial value
for(int i=0;i<5;i++)
for(int i1=0;i1<5;i1++)
for(int i2=0;i2<5;i2++)
cache[i][i1][i2]=-1;
System.out.println( maxSumPath(0, 0, 0));
}
}
// This code is contributed by Arnab Kundu
Python3
# Python 3 implementation of the approach
import sys
# Input matrix
n = 4
m = 4
arr = [[1, 0, 3, -1],
[3, 5, 1, -2],
[-2, 0, 1, 1],
[2, 1, -1, 1]]
# DP matrix
cache = [[[-1 for i in range(5)] for j in range(5)] for k in range(5)]
# Function to return the sum of the cells
# arr[i1][j1] and arr[i2][j2]
def sum(i1, j1, i2, j2):
if (i1 == i2 and j1 == j2):
return arr[i1][j1]
return arr[i1][j1] + arr[i2][j2]
# Recursive function to return the
# required maximum cost path
def maxSumPath(i1, j1, i2):
# Column number of second path
j2 = i1 + j1 - i2
# Base Case
if (i1 >= n or i2 >= n or j1 >= m or j2 >= m):
return 0
# If already calculated, return from DP matrix
if (cache[i1][j1][i2] != -1):
return cache[i1][j1][i2]
ans = -sys.maxsize-1
# Recurring for neighbouring cells of both paths together
ans = max(ans, maxSumPath(i1 + 1, j1, i2 + 1) + sum(i1, j1, i2, j2))
ans = max(ans, maxSumPath(i1, j1 + 1, i2) + sum(i1, j1, i2, j2))
ans = max(ans, maxSumPath(i1, j1 + 1, i2 + 1) + sum(i1, j1, i2, j2))
ans = max(ans, maxSumPath(i1 + 1, j1, i2) + sum(i1, j1, i2, j2))
# Saving result to the DP matrix for current state
cache[i1][j1][i2] = ans
return ans
# Driver code
if __name__ == '__main__':
print(maxSumPath(0, 0, 0))
# This code is contributed by
# Surendra_Gangwar
C#
// C# implementation of the approach
using System;
class GFG
{
// Input matrix
static int n = 4, m = 4;
static int [,]arr = { { 1, 0, 3, -1 },
{ 3, 5, 1, -2 },
{ -2, 0, 1, 1 },
{ 2, 1, -1, 1 } };
// DP matrix
static int [,,]cache = new int[5, 5, 5];
// Function to return the sum of the cells
// arr[i1][j1] and arr[i2][j2]
static int sum(int i1, int j1, int i2, int j2)
{
if (i1 == i2 && j1 == j2)
{
return arr[i1, j1];
}
return arr[i1, j1] + arr[i2, j2];
}
// Recursive function to return the
// required maximum cost path
static int maxSumPath(int i1, int j1, int i2)
{
// Column number of second path
int j2 = i1 + j1 - i2;
// Base Case
if (i1 >= n || i2 >= n || j1 >= m || j2 >= m)
{
return 0;
}
// If already calculated, return from DP matrix
if (cache[i1, j1, i2] != -1)
{
return cache[i1, j1, i2];
}
int ans = int.MinValue;
// Recurring for neighbouring cells of both paths together
ans = Math.Max(ans, maxSumPath(i1 + 1, j1, i2 + 1) + sum(i1, j1, i2, j2));
ans = Math.Max(ans, maxSumPath(i1, j1 + 1, i2) + sum(i1, j1, i2, j2));
ans = Math.Max(ans, maxSumPath(i1, j1 + 1, i2 + 1) + sum(i1, j1, i2, j2));
ans = Math.Max(ans, maxSumPath(i1 + 1, j1, i2) + sum(i1, j1, i2, j2));
// Saving result to the DP matrix for current state
cache[i1, j1, i2] = ans;
return ans;
}
// Driver code
public static void Main(String []args)
{
//set initial value
for(int i = 0; i < 5; i++)
for(int i1 = 0; i1 < 5; i1++)
for(int i2 = 0; i2 < 5; i2++)
cache[i,i1,i2]=-1;
Console.WriteLine( maxSumPath(0, 0, 0));
}
}
// This code contributed by Rajput-Ji
16
时间复杂度: O((N 2 )* M)