给定无向非加权图G。对于给定的节点start,返回最短路径,该路径是G的补图中从起点到所有节点的边数。
Complement Graph is a graph such that it contains only those edges which are not present in the original graph.
例子:
Input: Undirected Edges = (1, 2), (1, 3), (3, 4), (3, 5), Start = 1
Output: 0 2 3 1 1
Explanation:
Original Graph:
Complement Graph:
The distance from 1 to every node in the complement graph are:
1 to 1 = 0,
1 to 2 = 2,
1 to 3 = 3,
1 to 4 = 1,
1 to 5 = 1
天真的方法:一个简单的解决方案是创建补图,并在该图上使用广度优先搜索来查找到所有节点的距离。
时间复杂度: O(n 2 )用于创建补图,O(n + m)用于广度优先搜索。
高效方法:想法是使用修改的广度优先搜索来计算答案,然后无需构造补图。
- 对于每个顶点或节点,减小顶点的距离,该距离是当前顶点的补充,尚未被发现。
- 对于这个问题,我们必须观察到,如果图是稀疏的,那么未发现的节点将被非常快速地访问。
下面是上述方法的实现:
C++
// C++ implementation to find the
// shortest path in a complement graph
#include
using namespace std;
const int inf = 100000;
void bfs(int start, int n, int m,
map, int> edges)
{
int i;
// List of undiscovered vertices
// initially it will contain all
// the vertices of the graph
set undiscovered;
// Distance will store the distance
// of all vertices from start in the
// complement graph
vector distance_node(10000);
for (i = 1; i <= n; i++) {
// All vertices are undiscovered
undiscovered.insert(i);
// Let initial distance be infinity
distance_node[i] = inf;
}
undiscovered.erase(start);
distance_node[start] = 0;
queue q;
q.push(start);
// Check if queue is not empty and the
// size of undiscovered vertices
// is greater than 0
while (undiscovered.size() && !q.empty()) {
int cur = q.front();
q.pop();
// Vector to store all the complement
// vertex to the current vertex
// which has not been
// discovered or visited yet.
vector complement_vertex;
for (int x : undiscovered) {
if (edges.count({ cur, x }) == 0 &&
edges.count({ x, cur })==0)
complement_vertex.push_back(x);
}
for (int x : complement_vertex) {
// Check if optimal change
// the distance of this
// complement vertex
if (distance_node[x]
> distance_node[cur] + 1) {
distance_node[x]
= distance_node[cur] + 1;
q.push(x);
}
// Finally this vertex has been
// discovered so erase it from
// undiscovered vertices list
undiscovered.erase(x);
}
}
// Print the result
for (int i = 1; i <= n; i++)
cout << distance_node[i] << " ";
}
// Driver code
int main()
{
// n is the number of vertex
// m is the number of edges
// start - starting vertex is 1
int n = 5, m = 4;
// Using edge hashing makes the
// algorithm faster and we can
// avoid the use of adjacency
// list representation
map, int> edges;
// Initial edges for
// the original graph
edges[{ 1, 3 }] = 1,
edges[{ 3, 1 }] = 1;
edges[{ 1, 2 }] = 1,
edges[{ 2, 1 }] = 1;
edges[{ 3, 4 }] = 1,
edges[{ 4, 3 }] = 1;
edges[{ 3, 5 }] = 1,
edges[{ 5, 3 }] = 1;
bfs(1, n, m, edges);
return 0;
}
Java
// Java implementation to find the
// shortest path in a complement graph
import java.io.*;
import java.util.*;
class GFG{
// Pair class is made so as to
// store the edges between nodes
static class Pair
{
int left;
int right;
public Pair(int left, int right)
{
this.left = left;
this.right = right;
}
// We need to override hashCode so that
// we can use Set's properties like contains()
@Override
public int hashCode()
{
final int prime = 31;
int result = 1;
result = prime * result + left;
result = prime * result + right;
return result;
}
@Override
public boolean equals( Object other )
{
if (this == other){return true;}
if (other instanceof Pair)
{
Pair m = (Pair)other;
return this.left == m.left &&
this.right == m.right;
}
return false;
}
}
public static void bfs(int start, int n, int m,
Set edges)
{
int i;
// List of undiscovered vertices
// initially it will contain all
// the vertices of the graph
Set undiscovered = new HashSet<>();
// Distance will store the distance
// of all vertices from start in the
// complement graph
int[] distance_node = new int[1000];
for(i = 1; i <= n; i++)
{
// All vertices are undiscovered initially
undiscovered.add(i);
// Let initial distance be maximum value
distance_node[i] = Integer.MAX_VALUE;
}
// Start is discovered
undiscovered.remove(start);
// Distance of the node to itself is 0
distance_node[start] = 0;
// Queue used for BFS
Queue q = new LinkedList<>();
q.add(start);
// Check if queue is not empty and the
// size of undiscovered vertices
// is greater than 0
while (undiscovered.size() > 0 && !q.isEmpty())
{
// Current node
int cur = q.peek();
q.remove();
// Vector to store all the complement
// vertex to the current vertex
// which has not been
// discovered or visited yet.
Listcomplement_vertex = new ArrayList<>();
for(int x : undiscovered)
{
Pair temp1 = new Pair(cur, x);
Pair temp2 = new Pair(x, cur);
// Add the edge if not already present
if (!edges.contains(temp1) &&
!edges.contains(temp2))
{
complement_vertex.add(x);
}
}
for(int x : complement_vertex)
{
// Check if optimal change
// the distance of this
// complement vertex
if (distance_node[x] >
distance_node[cur] + 1)
{
distance_node[x] =
distance_node[cur] + 1;
q.add(x);
}
// Finally this vertex has been
// discovered so erase it from
// undiscovered vertices list
undiscovered.remove(x);
}
}
// Print the result
for(i = 1; i <= n; i++)
System.out.print(distance_node[i] + " ");
}
// Driver code
public static void main(String[] args)
{
// n is the number of vertex
// m is the number of edges
// start - starting vertex is 1
int n = 5, m = 4;
// Using edge hashing makes the
// algorithm faster and we can
// avoid the use of adjacency
// list representation
Set edges = new HashSet<>();
// Initial edges for
// the original graph
edges.add(new Pair(1, 3));
edges.add(new Pair(3, 1));
edges.add(new Pair(1, 2));
edges.add(new Pair(2, 1));
edges.add(new Pair(3, 4));
edges.add(new Pair(4, 3));
edges.add(new Pair(3, 5)) ;
edges.add(new Pair(5, 3));
Pair t = new Pair(1, 3);
bfs(1, n, m, edges);
}
}
// This code is contributed by kunalsg18elec
输出:
0 2 3 1 1
时间复杂度: O(V + E)
辅助空间: O(V)