该搜索算法的名称可能会误导O(Log n)时间,因此可能会产生误导。名称来自其搜索元素的方式。
Given a sorted array, and an element x to be
searched, find position of x in the array.
Input: arr[] = {10, 20, 40, 45, 55}
x = 45
Output: Element found at index 3
Input: arr[] = {10, 15, 25, 45, 55}
x = 15
Output: Element found at index 1
我们已经讨论了线性搜索,二进制搜索来解决这个问题。
指数搜索涉及两个步骤:
- 查找元素存在的范围
- 在找到的上述范围内进行二进制搜索。
如何找到元素可能存在的范围?
想法是从子数组大小1开始,将其最后一个元素与x进行比较,然后尝试大小2,然后尝试4,依此类推,直到子数组的最后一个元素不更大为止。
一旦找到索引i(在i重复翻倍之后),我们就知道该元素必须存在于i / 2和i之间(为什么要使用i / 2 ?,因为在先前的迭代中找不到更大的值)
以下是上述步骤的实现。
C++
// C++ program to find an element x in a
// sorted array using Exponential search.
#include
using namespace std;
int binarySearch(int arr[], int, int, int);
// Returns position of first occurrence of
// x in array
int exponentialSearch(int arr[], int n, int x)
{
// If x is present at firt location itself
if (arr[0] == x)
return 0;
// Find range for binary search by
// repeated doubling
int i = 1;
while (i < n && arr[i] <= x)
i = i*2;
// Call binary search for the found range.
return binarySearch(arr, i/2,
min(i, n-1), x);
}
// A recursive binary search function. It returns
// location of x in given array arr[l..r] is
// present, otherwise -1
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l)
{
int mid = l + (r - l)/2;
// If the element is present at the middle
// itself
if (arr[mid] == x)
return mid;
// If element is smaller than mid, then it
// can only be present n left subarray
if (arr[mid] > x)
return binarySearch(arr, l, mid-1, x);
// Else the element can only be present
// in right subarray
return binarySearch(arr, mid+1, r, x);
}
// We reach here when element is not present
// in array
return -1;
}
// Driver code
int main(void)
{
int arr[] = {2, 3, 4, 10, 40};
int n = sizeof(arr)/ sizeof(arr[0]);
int x = 10;
int result = exponentialSearch(arr, n, x);
(result == -1)? printf("Element is not
present in array")
: printf("Element is present
at index %d",
result);
return 0;
}
Java
// Java program to
// find an element x in a
// sorted array using
// Exponential search.
import java.util.Arrays;
class GFG
{
// Returns position of
// first occurrence of
// x in array
static int exponentialSearch(int arr[],
int n, int x)
{
// If x is present at firt location itself
if (arr[0] == x)
return 0;
// Find range for binary search by
// repeated doubling
int i = 1;
while (i < n && arr[i] <= x)
i = i*2;
// Call binary search for the found range.
return Arrays.binarySearch(arr, i/2,
Math.min(i, n-1), x);
}
// Driver code
public static void main(String args[])
{
int arr[] = {2, 3, 4, 10, 40};
int x = 10;
int result = exponentialSearch(arr,
arr.length, x);
System.out.println((result < 0) ?
"Element is not present in array" :
"Element is present at index " +
result);
}
}
Python
# Python program to find an element x
# in a sorted array using Exponential Search
# A recurssive binary search function returns
# location of x in given array arr[l..r] is
# present, otherwise -1
def binarySearch( arr, l, r, x):
if r >= l:
mid = l + ( r-l ) / 2
# If the element is present at
# the middle itself
if arr[mid] == x:
return mid
# If the element is smaller than mid,
# then it can only be present in the
# left subarray
if arr[mid] > x:
return binarySearch(arr, l,
mid - 1, x)
# Else he element can only be
# present in the right
return binarySearch(arr, mid + 1, r, x)
# We reach here if the element is not present
return -1
# Returns the position of first
# occurrence of x in array
def exponentialSearch(arr, n, x):
# IF x is present at first
# location itself
if arr[0] == x:
return 0
# Find range for binary search
# j by repeated doubling
i = 1
while i < n and arr[i] <= x:
i = i * 2
# Call binary search for the found range
return binarySearch( arr, i / 2,
min(i, n-1), x)
# Driver Code
arr = [2, 3, 4, 10, 40]
n = len(arr)
x = 10
result = exponentialSearch(arr, n, x)
if result == -1:
print "Element not found in thye array"
else:
print "Element is present at index %d" %(result)
# This code is contributed by Harshit Agrawal
C#
// C# program to find an element x in a
// sorted array using Exponential search.
using System;
class GFG {
// Returns position of first
// occurrence of x in array
static int exponentialSearch(int []arr,
int n, int x)
{
// If x is present at
// first location itself
if (arr[0] == x)
return 0;
// Find range for binary search
// by repeated doubling
int i = 1;
while (i < n && arr[i] <= x)
i = i * 2;
// Call binary search for
// the found range.
return binarySearch(arr, i/2,
Math.Min(i, n - 1), x);
}
// A recursive binary search
// function. It returns location
// of x in given array arr[l..r] is
// present, otherwise -1
static int binarySearch(int []arr, int l,
int r, int x)
{
if (r >= l)
{
int mid = l + (r - l) / 2;
// If the element is present
// at the middle itself
if (arr[mid] == x)
return mid;
// If element is smaller than
// mid, then it can only be
// present n left subarray
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
// Else the element can only
// be present in right subarray
return binarySearch(arr, mid + 1, r, x);
}
// We reach here when element
// is not present in array
return -1;
}
// Driver code
public static void Main()
{
int []arr = {2, 3, 4, 10, 40};
int n = arr.Length;
int x = 10;
int result = exponentialSearch(arr, n, x);
if (result == -1)
Console.Write("Element is not
present in array");
else
Console.Write("Element is
present at index "
+ result);
}
}
// This code is contributed by Smitha
PHP
= $l)
{
$mid = $l + ($r - $l)/2;
// If the element is
// present at the middle
// itself
if ($arr[$mid] == $x)
return $mid;
// If element is smaller
// than mid, then it
// can only be present
// n left subarray
if ($arr[$mid] > $x)
return binarySearch($arr, $l,
$mid - 1, $x);
// Else the element
// can only be present
// in right subarray
return binarySearch($arr, $mid + 1,
$r, $x);
}
// We reach here when
// element is not present
// in array
return -1;
}
// Driver code
$arr = array(2, 3, 4, 10, 40);
$n = count($arr);
$x = 10;
$result = exponentialSearch($arr, $n, $x);
if($result == -1)
echo "Element is not present in array";
else
echo "Element is present at index ",
$result;
// This code is contributed by anuj_67
?>
Javascript
输出
Element is present at index 3
时间复杂度: O(Log n)
辅助空间:二进制搜索的上述实现是递归的,并且需要O(Log n)空间。使用迭代二进制搜索,我们只需要O(1)空间。
指数搜索的应用:
- 指数二进制搜索对于数组大小无限的无界搜索特别有用。请参考“无界二进制搜索”的示例。
- 它比二进制搜索有界数组更好,并且当要搜索的元素更靠近第一个元素时,它的工作效果也更好。