📜  seaborn pairplot - Python (1)

📅  最后修改于: 2023-12-03 15:20:03.127000             🧑  作者: Mango

Seaborn Pairplot - Python

seaborn is a popular data visualization library in Python designed to work with pandas dataframes. One of the most commonly used function in seaborn is pairplot() which allows us to plot pairs of variables in a dataset.

Syntax
seaborn.pairplot(data, hue=None, hue_order=None, palette=None, diag_kind='auto', diag_kws=None, plot_kws=None, size=None)
Parameters
  • data: DataFrame
  • hue: str (variable name), optional
  • hue_order: list of strings, optional
  • palette: dict or seaborn color palette, optional
  • diag_kind: {‘auto’, ‘hist’, ‘kde’}, optional
  • diag_kws: dict, optional
  • plot_kws: dict, optional
  • size: scalar, optional
Usage
import seaborn as sns
import pandas as pd

# Load iris dataset
iris = sns.load_dataset("iris")

# Plot the pairwise relationships between all variables in the dataset
sns.pairplot(iris)
Example

Suppose we have a pandas DataFrame df as shown below:

import pandas as pd
import seaborn as sns

df = sns.load_dataset('titanic')
df.head()

| | survived | pclass | sex | age | sibsp | parch | fare | embarked | class | who | adult_male | deck | embark_town | alive | alone | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 0 | 0 | 3 | male | 22.0 | 1 | 0 | 7.2500 | S | Third | man | True | NaN | Southampton | no | False | | 1 | 1 | 1 | female | 38.0 | 1 | 0 | 71.2833 | C | First | woman | False | C | Cherbourg | yes | False | | 2 | 1 | 3 | female | 26.0 | 0 | 0 | 7.9250 | S | Third | woman | False | NaN | Southampton | yes | True | | 3 | 1 | 1 | female | 35.0 | 1 | 0 | 53.1000 | S | First | woman | False | C | Southampton | yes | False | | 4 | 0 | 3 | male | 35.0 | 0 | 0 | 8.0500 | S | Third | man | True | NaN | Southampton | no | True |

We can use pairplot() to visualize the pairwise relationships between numerical variables in the dataset.

sns.pairplot(df[['survived', 'age', 'fare']])

pairplot example

We can also use hue parameter to add a categorical variable to our visualization.

sns.pairplot(df[['survived', 'age', 'fare', 'sex']], hue='sex')

pairplot with hue example

Conclusion

In this article, we learned about seaborn pairplot() function and how to use it to visualize pairwise relationships between variables in a dataset. pairplot() is a powerful and versatile tool that can help us explore different aspects of our data.