📜  def identity_block(X, f, filters, training=True, initializer=random_uniform): - Python 代码示例

📅  最后修改于: 2022-03-11 14:46:28.526000             🧑  作者: Mango

代码示例1
def convolutional_block(X, f, filters, s = 2, training=True, initializer=glorot_uniform):
    
    # Retrieve Filters
    F1, F2, F3 = filters
    
    # Save the input value
    X_shortcut = X


    ##### MAIN PATH #####
    
    # First component of main path glorot_uniform(seed=0)
    X = Conv2D(filters = F1, kernel_size = 1, strides = (s, s), padding='valid', kernel_initializer = initializer(seed=0))(X)
    X = BatchNormalization(axis = 3)(X, training=training)
    X = Activation('relu')(X)

    ### START CODE HERE
    
    ## Second component of main path (≈3 lines)
    X = Conv2D(filters = F2, kernel_size = f, strides = (1, 1), padding='same', kernel_initializer = initializer(seed=0))(X) 
    X = BatchNormalization(axis = 3)(X, training=training)
    X = Activation('relu')(X)

    ## Third component of main path (≈2 lines)
    X = Conv2D(filters = F3, kernel_size = 1, strides = (1, 1), padding='valid', kernel_initializer = initializer(seed=0))(X)
    X = BatchNormalization(axis = 3)(X, training=training)
    
    ##### SHORTCUT PATH ##### (≈2 lines)
    X_shortcut = Conv2D(filters = F3, kernel_size = 1, strides = (s, s), padding='valid', kernel_initializer = initializer(seed=0))(X_shortcut)
    X_shortcut = BatchNormalization(axis = 3)(X_shortcut, training=training)
    
    ### END CODE HERE

    # Final step: Add shortcut value to main path (Use this order [X, X_shortcut]), and pass it through a RELU activation
    X = Add()([X, X_shortcut])
    X = Activation('relu')(X)
    
    return X