📅  最后修改于: 2023-12-03 14:57:21.620000             🧑  作者: Mango
给定一个无向图 $G = (V, E)$,以及一些额外的约束条件,如:图 $G$ 必须是连通的, 结点 $a$ 和结点 $b$ 必须连通,等等。现在,我们需要根据这些约束条件添加最少的边,使得原图变成满足条件的图。
这个问题可以被看作是一种最小生成树问题。我们可以先将图 $G$ 变成无向带权图,然后用 Kruskal 算法求出 $G$ 的最小生成树 $T$,随后根据给定的约束条件,一次添加边,构成满足条件的图。
如果给出的约束条件可以被拆分为多个独立的子问题,我们可以分别解决每个子问题,然后将它们的解合并起来得到最终的解。
为了将无向图变成无向带权图,我们可以将所有没有权值的边(也就是原图中没有被标记的边),加上一个默认权值。这个默认权值可以是一个以图中边权为基础的常数,也可以是一个和边出现频率紧密相关的值。
Kruskal 算法是一种用于计算最小生成树的贪心算法。它按照边的权值递增的顺序来选取边,同时保证选中的边不会形成环。
在实现 Kruskal 算法时,我们可以使用归并集合(disjoint-set)数据结构,将图中的结点分组到不同的集合,并在遍历边时判断当前边的两个结点是否属于同一集合,如果不属于同一集合,就可以将创造一条新的连通路径。
对于一些满足特定条件的约束,比如连通性,我们可以使用深度优先搜索(DFS)来判断它们是否满足。对于一些其它的约束,比如结点之间必须连通,我们也可以使用 DFS 来判断两个结点之间是否连通。
如果给出的约束条件可以被拆分为多个独立的子问题,我们需要将每个子问题分别解决,然后将它们的解合并起来才能得到最终的解。比如,我们需要同时考虑图的连通性和结点 $a$ 和结点 $b$ 之间的连通性,我们可以先将图变成连通图,然后再加上结点 $a$ 和结点 $b$ 之间的边。如果图已经连通,我们就可以直接加上结点 $a$ 和结点 $b$ 之间的边。
以下是 Python 实现的示例代码:
from collections import defaultdict
from typing import List
class Graph:
def __init__(self):
self.edges = defaultdict(list)
def add_edge(self, u, v, weight=1):
self.edges[u].append((v, weight))
self.edges[v].append((u, weight))
def add_edges(self, edges):
for edge in edges:
self.add_edge(*edge)
def find_parent(self, node, parent):
if parent[node] == node:
return node
return self.find_parent(parent[node], parent)
def union(self, node1, node2, parent, rank):
parent1 = self.find_parent(node1, parent)
parent2 = self.find_parent(node2, parent)
if rank[parent1] > rank[parent2]:
parent[parent2] = parent1
elif rank[parent1] < rank[parent2]:
parent[parent1] = parent2
else:
parent[parent1] = parent2
rank[parent2] += 1
def get_mst(self):
parent = {}
rank = {}
# Initialize disjoint set
for node in self.edges:
parent[node] = node
rank[node] = 0
# Sort edges by increasing weight
edges = []
for node in self.edges:
for neighbor, weight in self.edges[node]:
edges.append((node, neighbor, weight))
edges.sort(key=lambda x: x[2])
# Kruskal's algorithm
mst_edges = []
for u, v, weight in edges:
if self.find_parent(u, parent) != self.find_parent(v, parent):
mst_edges.append((u, v))
self.union(u, v, parent, rank)
return Graph().add_edges(mst_edges)
def is_connected(self):
visited = {node: False for node in self.edges}
stack = []
stack.append(list(self.edges.keys())[0])
visited[stack[-1]] = True
# DFS traversal
while len(stack) > 0:
node = stack.pop()
for neighbor, weight in self.edges[node]:
if not visited[neighbor]:
visited[neighbor] = True
stack.append(neighbor)
return all(visited.values())
def add_edges_to_connect_all_nodes(self):
if self.is_connected():
return Graph()
mst = self.get_mst()
components = []
components_nodes = {}
for node in mst.edges:
component_found = False
for i in range(len(components)):
if node in components[i]:
components[i].extend(mst.edges[node])
components_nodes[i].append(node)
component_found = True
break
if not component_found:
components.append(mst.edges[node])
components_nodes[len(components)-1] = [node]
for i in range(len(components)):
edges = components[i]
nodes = components_nodes[i]
visited = {node: False for node in nodes}
stack = []
stack.append(nodes[0])
visited[stack[-1]] = True
# DFS traversal
while len(stack) > 0:
node = stack.pop()
for neighbor, weight in edges:
if node == neighbor and not visited[neighbor]:
visited[neighbor] = True
stack.append(neighbor)
for node in nodes:
if not visited[node]:
min_weight = float("inf")
min_edge = None
for neighbor, weight in self.edges[node]:
if neighbor in nodes and weight < min_weight:
min_weight = weight
min_edge = (node, neighbor)
if min_edge:
edges.append(min_edge)
new_graph = Graph()
for edges in components:
new_graph.add_edges(edges)
return new_graph
def add_edge_to_connect_nodes(self, a, b):
if a == b:
return Graph()
mst = self.get_mst()
parent = {}
rank = {}
# Initialize disjoint set
for node in mst.edges:
parent[node] = node
rank[node] = 0
# Find paths from a and b to the roots of their components
a_path = [(a, 0)]
while a_path[-1][0] != parent[a_path[-1][0]]:
a_path.append((parent[a_path[-1][0]], a_path[-1][1]+1))
b_path = [(b, 0)]
while b_path[-1][0] != parent[b_path[-1][0]]:
b_path.append((parent[b_path[-1][0]], b_path[-1][1]+1))
# Find the lca of a and b
lca = None
if len(a_path) <= len(b_path):
for i in range(len(a_path)):
if a_path[i][0] == b_path[i][0]:
lca = a_path[i][0]
break
else:
for i in range(len(b_path)):
if b_path[i][0] == a_path[i][0]:
lca = b_path[i][0]
break
# Find the minimum weight edge that connects a and b
min_weight = float("inf")
min_edge = None
for a_neighbor, a_weight in self.edges[a]:
if self.find_parent(a_neighbor, parent) != self.find_parent(a, parent):
for b_neighbor, b_weight in self.edges[b]:
if self.find_parent(b_neighbor, parent) != self.find_parent(b, parent) and \
(a_neighbor, b_neighbor) not in mst.edges and (b_neighbor, a_neighbor) not in mst.edges:
weight = a_weight + b_weight
if weight < min_weight:
min_weight = weight
min_edge = (a_neighbor, b_neighbor)
# Check if adding the minimum edge will create cycle
cycle_found = False
if min_edge:
mst_edges = [(u, v) for u, v in mst.edges]
mst_edges.append(min_edge)
for u, v in mst_edges:
if self.find_parent(u, parent) == self.find_parent(v, parent):
cycle_found = True
break
# Add the new edge if it doesn't create cycle
if min_edge and not cycle_found:
mst.add_edge(*min_edge, weight=min_weight)
return mst
# Example usage
g = Graph()
g.add_edges([(1, 2), (2, 3), (4, 5)])
g = g.add_edges_to_connect_all_nodes()
g = g.add_edge_to_connect_nodes(2, 5)
print(g.edges)
这个示例代码演示了如何使用 Kruskal 算法计算最小生成树,以及如何根据给定的约束条件添加边使得图满足条件。