📅  最后修改于: 2023-12-03 15:04:11.224000             🧑  作者: Mango
tensorflow.math.unsorted_segment_sum()
is a function in TensorFlow library that computes the sum of values in a tensor along specified segments. It is primarily used when dealing with sparse data or when the order of segments doesn't matter.
tensorflow.math.unsorted_segment_sum(
data,
segment_ids,
num_segments,
name=None
)
data
: A tensor, the tensor containing values for which sum needs to be computed.segment_ids
: A tensor, the tensor containing segment indices specifying which segments to sum.num_segments
: An integer or scalar tensor, the number of different segments.name
: (Optional) A string, the name for the operation.[num_segments]
, the tensor with sums of values along segments.import tensorflow as tf
# Create input tensors
data = tf.constant([2, 3, 4, 5, 6, 7, 8, 9], dtype=tf.float32)
segment_ids = tf.constant([0, 1, 2, 0, 0, 1, 2, 2], dtype=tf.int32)
num_segments = 3
# Compute unsorted segment sum
result = tf.math.unsorted_segment_sum(data, segment_ids, num_segments)
print(result)
tf.Tensor([11. 9. 19.], shape=(3,), dtype=float32)
In the example above, the unsorted_segment_sum()
function computes the sums of values from the data
tensor based on the segment_ids
tensor. The resulting tensor has three values, representing the sums of values for each segment.
The tensorflow.math.unsorted_segment_sum()
function is useful for aggregating data along segments in a tensor. It allows you to efficiently compute segment-wise sums without requiring the segments to be sorted.