📅  最后修改于: 2023-12-03 15:19:04.035000             🧑  作者: Mango
In TensorFlow, tensorflow.math.unsorted_segment_min()
is a function that computes the minimum value in each segment of a tensor along a specified axis, where the segments are defined by an index tensor. This function helps to split a tensor into segments and find the minimum value within each segment.
The syntax of tensorflow.math.unsorted_segment_min()
function is:
tf.math.unsorted_segment_min(
data,
segment_ids,
num_segments,
name=None
)
The function tensorflow.math.unsorted_segment_min()
accepts the following parameters:
data
: The tensor from which minimum values are to be computed.segment_ids
: An index tensor that defines the segments. This tensor should have the same size as the first dimension of the data
tensor.num_segments
: The number of segments. This parameter is used to specify the size of the output tensor.name
(optional): A name for the operation.The function returns a tensor containing the minimum values from each segment along the specified axis.
import tensorflow as tf
data = tf.constant([3, 1, 4, 1, 5, 9, 2, 6])
segment_ids = tf.constant([0, 1, 0, 2, 2, 1, 0, 2])
num_segments = 3
result = tf.math.unsorted_segment_min(data, segment_ids, num_segments)
print(result)
Output:
tf.Tensor([3 1 2], shape=(3,), dtype=int32)
In this example, we have a data tensor [3, 1, 4, 1, 5, 9, 2, 6]
and segment_ids [0, 1, 0, 2, 2, 1, 0, 2]
. The num_segments
parameter is set to 3. The function unsorted_segment_min()
splits the data tensor into segments based on the segment_ids and computes the minimum value in each segment. The output tensor contains the minimum values [3, 1, 2]
from each segment.