📜  从 coco 加载训练数据 python - Python (1)

📅  最后修改于: 2023-12-03 15:36:13.098000             🧑  作者: Mango

从 coco 加载训练数据 python - Python

如果您想要训练或测试你的计算机视觉算法,MSCOCO数据集是一个非常好的选择。在本文中,我们将学习如何使用Python来导入MSCOCO数据集。

获取训练数据

首先,您需要下载训练数据集。您可以从以下链接中获取MSCOCO数据集:http://cocodataset.org/#download

然后,您需要从压缩文件中提取数据。

导入必要的库

你需要导入以下的库:numpy、matplotlib、opencv-python和pycocotools。

import numpy as np
import matplotlib.pyplot as plt
import cv2
from pycocotools.coco import COCO
载入数据集

我们将使用pycocotools库来载入MSCOCO数据集。

dataDir = "/path/to/coco/data/directory"
dataType = "train2017"   # or "val2017" for validation set
annFile = "%s/annotations/instances_%s.json" % (dataDir, dataType)

# initialize COCO api
coco = COCO(annFile)
获取类别标签
# get all categories
categories = coco.loadCats(coco.getCatIds())

# get category names
category_names = [category['name'] for category in categories]
获取图像信息
# get all images
image_ids = coco.getImgIds()

# get image's file name, width and height
for image_id in image_ids:
    image_info = coco.loadImgs(image_id)[0]
    filename = image_info['file_name']
    width = image_info['width']
    height = image_info['height']
获取注释信息
# get all annotations
annotation_ids = coco.getAnnIds()

# load annotations
annotations = coco.loadAnns(annotation_ids)

# get bounding boxes
bboxes = [annotation['bbox'] for annotation in annotations]

# get class ids
class_ids = [annotation['category_id'] for annotation in annotations]
读取图像
image = cv2.imread("/path/to/image")
可视化

您可以使用matplotlib库显示图像和边界框。

# plot image
plt.imshow(image)

# plot bounding boxes
for bbox in bboxes:
    x, y, w, h = bbox
    rect = plt.Rectangle((x, y), w, h, fill=False, color='r')
    plt.gca().add_patch(rect)
    plt.axis('off')

以上就是从MSCOCO数据集中读取训练数据的过程。如果您想了解更多关于MSCOCO数据集和pycocotools库的信息,请参考以下链接:

  • MSCOCO数据集:http://cocodataset.org/
  • pycocotools library: https://github.com/cocodataset/cocoapi