📅  最后修改于: 2023-12-03 15:11:48.017000             🧑  作者: Mango
自然语言工具包(Natural Language Toolkit,简称NLTK)是一个广受欢迎的自然语言处理(NLP)库,可用于处理文本数据。其中包括一个强大而灵活的解析模块,用于将文本分解成它们所含义的组成部分。
要安装NLTK,请在命令行中键入以下内容:
pip install nltk
在NLTK中,解析任务的一般步骤是将文本分解为单词和句子,然后将它们标记为它们所代表的特定部分。下面是一些基本的解析任务:
import nltk
nltk.word_tokenize("This is a sentence.")
输出:
['This', 'is', 'a', 'sentence', '.']
import nltk
text = "This is the first sentence. This is another sentence. This is yet another."
sentences = nltk.sent_tokenize(text)
print(len(sentences))
输出:
3
import nltk
nltk.download('averaged_perceptron_tagger')
text = nltk.word_tokenize("The quick brown fox jumps over the lazy dog.")
nltk.pos_tag(text)
输出:
[('The', 'DT'),
('quick', 'JJ'),
('brown', 'NN'),
('fox', 'NN'),
('jumps', 'VBZ'),
('over', 'IN'),
('the', 'DT'),
('lazy', 'JJ'),
('dog', 'NN'),
('.', '.')]
import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('senna')
text = "John loves Mary. She didn't really know how he felt."
sentences = nltk.sent_tokenize(text)
for sentence in sentences:
words = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(words)
tree = nltk.parse_senna(' '.join(words))
print(tree)
输出:
(S (NP John) (VP (VBZ loves) (NP Mary)))
(S (SBAR (S (NP She) (VP (VBD did) (RB n't) (ADVP (RB really)) (VP (VB know) (SBAR (IN how) (S (NP he) (VP (VBD felt)))))))))
解析是自然语言处理的基本任务之一,对于从文本中获取信息至关重要。NLTK提供了一种简单而强大的解析方式,可以帮助程序员更好地处理文本数据。