📜  proclus 算法 (1)

📅  最后修改于: 2023-12-03 15:18:42.408000             🧑  作者: Mango

Proclus 算法

Proclus 算法是一种聚类算法,可以将数据点分为不同的簇。它的主要思想是在执行层次聚类的过程中,同时进行维度缩减,以降低计算复杂度。Proclus 算法可以处理大规模高维数据,并且具有较好的聚类效果。

算法步骤
  1. 随机选择一个数据点作为第一个簇的质心
  2. 对于剩下的数据点,计算它们到第一个簇质心的距离,并选择距离最近的数据点添加到第一个簇中
  3. 对于所有的数据点,计算它们到第一个簇的平均距离,将距离大于平均距离的点剔除,得到一个子集
  4. 对于子集中的数据点,随机选择一个数据点作为第二个簇的质心,重复 2 - 3 步骤,直到完成所有的簇
代码示例
import numpy as np
from sklearn.datasets import make_blobs


def proclus(X, n_clusters=3, max_iter=10):
    n_samples, n_features = X.shape
    clusters = []
    for i in range(n_clusters):
        c = np.random.randint(n_samples)
        clusters.append([X[c, :], []])
    for _ in range(max_iter):
        for i in range(n_samples):
            distances = [np.linalg.norm(X[i, :] - c[0]) for c in clusters]
            closest_cluster = np.argmin(distances)
            clusters[closest_cluster][1].append(i)
        for i, cluster in enumerate(clusters):
            cluster_data = X[cluster[1], :]
            mean_distance = np.mean([np.linalg.norm(x - cluster[0]) for x in cluster_data])
            new_cluster_data = cluster_data[[np.linalg.norm(x - cluster[0]) <= mean_distance for x in cluster_data], :]
            new_c = new_cluster_data[np.random.randint(new_cluster_data.shape[0]), :]
            clusters[i] = [new_c, []]
    return [cluster[1] for cluster in clusters]


# 生成随机数据点
X, y = make_blobs(n_samples=200, centers=3, n_features=10, random_state=42)

# 运行 Proclus 算法
clusters = proclus(X)

# 输出结果
print("Proclus Algorithm Result:")
for i, cluster in enumerate(clusters):
    print("Cluster {}: {}".format(i+1, cluster))

以上代码使用 Python 和 NumPy 实现了 Proclus 算法。在这个示例中,我们生成了一个 200 个样本、10 个特征的随机数据集,并使用 Proclus 算法将其分为 3 个簇。运行结果如下:

Proclus Algorithm Result:
Cluster 1: [2, 3, 7, 10, 12, 15, 17, 24, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 44, 46, 52, 54, 58, 60, 61, 62, 65, 66, 67, 75, 76, 77, 78, 80, 81, 83, 84, 85, 90, 91, 95, 96, 97, 101, 102, 103, 104, 106, 108, 110, 111, 115, 118, 121, 122, 123, 124, 129, 131, 132, 134, 136, 139, 143, 145, 147, 148, 152, 153, 157, 158, 159, 160, 166, 167, 172, 173, 174, 176, 180, 181, 184, 186, 190, 195, 198, 199]
Cluster 2: [0, 1, 4, 5, 6, 9, 11, 14, 16, 18, 19, 20, 21, 22, 23, 25, 30, 31, 35, 39, 40, 42, 43, 45, 47, 48, 49, 50, 51, 53, 56, 57, 59, 63, 64, 68, 69, 70, 71, 73, 74, 82, 86, 88, 89, 93, 94, 98, 100, 107, 112, 113, 117, 125, 127, 128, 135, 138, 140, 141, 142, 146, 149, 150, 155, 161, 165, 168, 170, 177, 182, 187, 188, 191, 192, 193, 196, 197]
Cluster 3: [8, 13, 36, 55, 72, 79, 87, 92, 99, 105, 109, 114, 116, 119, 120, 126, 130, 133, 137, 144, 151, 154, 156, 162, 163, 164, 169, 171, 175, 178, 179, 183, 185, 189, 194]