Python中的 Matplotlib.axis.Axis.get_alpha()函数
Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。它是Python中用于二维数组图的惊人可视化库,用于处理更广泛的 SciPy 堆栈。
Matplotlib.axis.Axis.get_alpha()函数
matplotlib 库的轴模块中的Axis.get_alpha()函数用于获取用于混合的 alpha 值。
Syntax: Axis.get_alpha(self)
Parameters: This method does not accepts any parameter.
Return value: This method return the alpha value used for blending.
下面的示例说明了 matplotlib.axis 中的 matplotlib.axis.Axis.get_alpha()函数:
示例 1:
Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(10**7)
mu = 121
sigma = 21
x = mu + sigma * np.random.randn(1000)
num_bins = 100
fig, ax = plt.subplots()
n, bins, patches = ax.hist(x, num_bins,
density = 1,
color ='green',
alpha = 0.7)
y = ((1 / (np.sqrt(2 * np.pi) * sigma)) *
np.exp(-0.5 * (1 / sigma * (bins - mu))**2))
ax.plot(bins, y, '--', color ='black')
ax.set_xlabel('X-Axis')
ax.set_ylabel('Y-Axis')
w = Axis.get_alpha(ax)
ax.set_title("Alpha Value : "+str(w))
fig.suptitle("""matplotlib.axis.Axis.get_alpha()
function Example\n""", fontweight ="bold")
plt.show()
Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt
import numpy as np
rx, ry = 3., 1.
value1 = rx * ry * np.pi
value2 = np.arange(0, 3 * np.pi + 0.01, 0.2)
value3 = np.column_stack([rx / value1 * np.cos(value2),
ry / value1 * np.sin(value2)])
x, y, s, c = np.random.rand(4, 99)
s *= 10**2.
fig, ax = plt.subplots()
ax.scatter(x, y, s, c, marker = value3)
Axis.set_alpha(ax, 0.5)
w = Axis.get_alpha(ax)
ax.set_title("Alpha Value : "+str(w))
fig.suptitle("""matplotlib.axis.Axis.get_alpha()
function Example\n""", fontweight ="bold")
plt.show()
输出:
示例 2:
Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt
import numpy as np
rx, ry = 3., 1.
value1 = rx * ry * np.pi
value2 = np.arange(0, 3 * np.pi + 0.01, 0.2)
value3 = np.column_stack([rx / value1 * np.cos(value2),
ry / value1 * np.sin(value2)])
x, y, s, c = np.random.rand(4, 99)
s *= 10**2.
fig, ax = plt.subplots()
ax.scatter(x, y, s, c, marker = value3)
Axis.set_alpha(ax, 0.5)
w = Axis.get_alpha(ax)
ax.set_title("Alpha Value : "+str(w))
fig.suptitle("""matplotlib.axis.Axis.get_alpha()
function Example\n""", fontweight ="bold")
plt.show()
输出: