计算 Pandas 数据框的行数和列数
Pandas 允许我们通过计算数据帧中的行数和列数来获得数据帧的形状。您可以尝试各种方法来获取数据框的行数和列数。所有这些都在下面进行了讨论。
示例:让我们以一个由学生考试结果数据组成的数据框为例。
# importing pandas
import pandas as pd
result_data = {'name': ['Katherine', 'James', 'Emily',
'Michael', 'Matthew', 'Laura'],
'score': [98, 80, 60, 85, 49, 92],
'age': [20, 25, 22, 24, 21, 20],
'qualify_label': ['yes', 'yes', 'no',
'yes', 'no', 'yes']}
# creating dataframe
df = pd.DataFrame(result_data, index = None)
# computing number of rows
rows = len(df.axes[0])
# computing number of columns
cols = len(df.axes[1])
print(df)
print("Number of Rows: ", rows)
print("Number of Columns: ", cols)
输出 :
示例:让我们以包含产品销售数据的数据框为例。
# importing pandas
import pandas as pd
# creating dataframe
df = pd.DataFrame({'Product' : ['Carrots', 'Broccoli', 'Banana',
'Banana', 'Beans', 'Orange',
'Broccoli', 'Banana'],
'Category' : ['Vegetable', 'Vegetable', 'Fruit',
'Fruit', 'Vegetable', 'Fruit',
'Vegetable', 'Fruit'],
'Quantity' : [8, 5, 3, 4, 5, 9, 11, 8],
'Amount' : [270, 239, 617, 384, 626, 610, 62, 90]})
print(df)
# getting number of rows
print("Number of Rows: ", len(df.axes[0]))
# getting number of columns
print("Number of Columns: ", len(df.axes[1]))
输出 :
示例:在这里,我们将尝试一种不同的方法来计算导入的 csv 文件的数据框的行和列。
# importing pandas
import pandas as pd
# importing csv file
df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')
print(df.head())
# obtaining the shape
print("shape of dataframe", df.shape)
# obtaining the number of rows
print("number of rows : ", df.shape[0])
# obtaining the number of columns
print("number of columns : ", df.shape[1])
输出 :