Python中的 Matplotlib.patches.ConnectionPatch 类
Matplotlib是Python中用于数组二维图的惊人可视化库。 Matplotlib 是一个基于 NumPy 数组构建的多平台数据可视化库,旨在与更广泛的 SciPy 堆栈配合使用。
matplotlib.patches.ConnectionPatch
matplotlib.patches.ConnectionPatch 是 matplotlib.patches.FancyArrowPatch 类的子类,用于制作两点之间的连接线。
Syntax: class matplotlib.patches.ConnectionPatch(xyA, xyB, coordsA, coordsB=None, axesA=None, axesB=None, arrowstyle=’-‘, arrow_transmuter=None, connectionstyle=’arc3’, connector=None, patchA=None, patchB=None, shrinkA=0.0, shrinkB=0.0, mutation_scale=10.0, mutation_aspect=None, clip_on=False, dpi_cor=1.0, **kwargs)
Parameters:
- xyA: It is the start point of connecting line on x-y plot also called Point A.
- xyB: It is the start point of connecting line on x-y plot also called Point B.
- coordsA: Coordinate of point A.
- coordsB: Coordinate of point B.
- axesA: It is the start point of connecting axes on x-y plot.
- axesB: It is the end point of connecting axes on x-y plot.
- arrowstyle: It is used for styling the connection arrow. Its default type is ‘-‘.
- arrow_transmuter: It is used to ignore a connecting line.
- connectionstyle: It describes how posA and posB are connected. It can be an instance of the class ConnectionStyle or a string by the name of connectionstyle, it has optional comma-separated attributes.
- connector: It is generally ignored and decides which connector to ignore.
- patchA: Used to add patches at point A.
- patchB: Used to add patches at point B
- shrinkA: Used to shrink the connector at point A.
- shrinkB: Used to shrink the connector at point B.
- mutation_scale: Value with which attributes of arrowstyle (e.g., head_length) gets scaled.
- mutation_aspect: The height of the rectangle will be squeezed by this value before the mutation and the mutated box will be stretched by the inverse of it.
- clip_on: Set whether the artist uses clipping.
- dpi_cor: dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this.
以下是有效的 Kwargs 密钥列表;
Key | Description |
---|---|
arrowstyle | the arrow style |
connectionstyle | the connection style |
relpos | default is (0.5, 0.5) |
patchA | default is bounding box of the text |
patchB | default is None |
shrinkA | default is 2 points |
shrinkB | default is 2 points |
mutation_scale | default is text size (in points) |
mutation_aspect | default is 1. |
? | any key for matplotlib.patches.PathPatch |
xyA 和 xyB 的坐标由字符串coordsA 和 coordsB 表示。Property Description ‘figure points’ points from the lower left corner of the figure ‘figure pixels’ pixels from the lower left corner of the figure ‘figure fraction’ 0, 0 is lower left of figure and 1, 1 is upper right ‘axes points’ points from lower left corner of axes ‘axes pixels’ pixels from lower left corner of axes ‘axes fraction’ 0, 0 is lower left of axes and 1, 1 is upper right ‘data’ use the coordinate system of the object being annotated (default) ‘offset points’ offset (in points) from the xy value ‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using a polar axes, you do not need to specify polar for the coordinate system since that is the native “data” coordinate system.
示例 1:
Python3
from matplotlib.patches import ConnectionPatch
import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(1, 2,
figsize =(6, 3))
# Draw a simple arrow between
# two points in axes coordinates
# within a single axes.
xyA = (0.2, 0.2)
xyB = (0.8, 0.8)
coordsA = "data"
coordsB = "data"
con = ConnectionPatch(xyA, xyB,
coordsA, coordsB,
arrowstyle ="-|>",
shrinkA = 5, shrinkB = 5,
mutation_scale = 20,
fc ="w")
ax1.plot([xyA[0], xyB[0]], [xyA[1],
xyB[1]], "o")
ax1.add_artist(con)
# Draw an arrow between the
# same point in data coordinates,
# but in different axes.
xy = (0.3, 0.2)
con = ConnectionPatch(
xyA = xy, coordsA = ax2.transData,
xyB = xy, coordsB = ax1.transData,
arrowstyle ="->", shrinkB = 5)
ax2.add_artist(con)
# Draw a line between the different
# points, defined in different coordinate
# systems.
con = ConnectionPatch(
# in axes coordinates
xyA =(0.6, 1.0), coordsA = ax2.transAxes,
# x in axes coordinates, y in data coordinates
xyB =(0.0, 0.2), coordsB = ax2.get_yaxis_transform(),
arrowstyle ="-")
ax2.add_artist(con)
ax1.set_xlim(0, 1)
ax1.set_ylim(0, 1)
ax2.set_xlim(0, .5)
ax2.set_ylim(0, .5)
plt.show()
Python3
import matplotlib.pyplot as plt
from matplotlib.patches import ConnectionPatch
import numpy as np
# make figure and assign axis
# objects
fig = plt.figure(figsize =(9, 5))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
fig.subplots_adjust(wspace = 0)
# pie chart parameters
ratios = [.27, .56, .17]
explode = [0.1, 0, 0]
# rotate so that first wedge is
# split by the x-axis
angle = -180 * ratios[0]
ax1.pie(ratios, autopct ='% 1.1f %%',
startangle = angle,
explode = explode)
# bar chart parameters
xpos = 0
bottom = 0
ratios = [.33, .54, .07, .06]
width = .2
colors = [[.1, .3, .5],
[.1, .3, .3],
[.1, .3, .7],
[.1, .3, .9]]
for j in range(len(ratios)):
height = ratios[j]
ax2.bar(xpos, height, width,
bottom = bottom,
color = colors[j])
ypos = bottom + ax2.patches[j].get_height() / 2
bottom += height
ax2.text(xpos,
ypos,
"% d %%" % (ax2.patches[j].get_height() * 100),
ha ='center')
ax2.set_title('')
ax2.legend(('50-65', 'Over 65', '35-49', 'Under 35'))
ax2.axis('off')
ax2.set_xlim(- 2.5 * width, 2.5 * width)
# use ConnectionPatch to draw
# lines between the two plots
# get the wedge data
theta1, theta2 = ax1.patches[0].theta1, ax1.patches[0].theta2
center, r = ax1.patches[0].center, ax1.patches[0].r
bar_height = sum([item.get_height() for item in ax2.patches])
# draw top connecting line
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA =(-width / 2, bar_height),
coordsA = ax2.transData,
xyB =(x, y),
coordsB = ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
# draw bottom connecting line
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA =(-width / 2, 0),
coordsA = ax2.transData,
xyB =(x, y),
coordsB = ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
plt.show()
输出:
示例 2:
Python3
import matplotlib.pyplot as plt
from matplotlib.patches import ConnectionPatch
import numpy as np
# make figure and assign axis
# objects
fig = plt.figure(figsize =(9, 5))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
fig.subplots_adjust(wspace = 0)
# pie chart parameters
ratios = [.27, .56, .17]
explode = [0.1, 0, 0]
# rotate so that first wedge is
# split by the x-axis
angle = -180 * ratios[0]
ax1.pie(ratios, autopct ='% 1.1f %%',
startangle = angle,
explode = explode)
# bar chart parameters
xpos = 0
bottom = 0
ratios = [.33, .54, .07, .06]
width = .2
colors = [[.1, .3, .5],
[.1, .3, .3],
[.1, .3, .7],
[.1, .3, .9]]
for j in range(len(ratios)):
height = ratios[j]
ax2.bar(xpos, height, width,
bottom = bottom,
color = colors[j])
ypos = bottom + ax2.patches[j].get_height() / 2
bottom += height
ax2.text(xpos,
ypos,
"% d %%" % (ax2.patches[j].get_height() * 100),
ha ='center')
ax2.set_title('')
ax2.legend(('50-65', 'Over 65', '35-49', 'Under 35'))
ax2.axis('off')
ax2.set_xlim(- 2.5 * width, 2.5 * width)
# use ConnectionPatch to draw
# lines between the two plots
# get the wedge data
theta1, theta2 = ax1.patches[0].theta1, ax1.patches[0].theta2
center, r = ax1.patches[0].center, ax1.patches[0].r
bar_height = sum([item.get_height() for item in ax2.patches])
# draw top connecting line
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA =(-width / 2, bar_height),
coordsA = ax2.transData,
xyB =(x, y),
coordsB = ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
# draw bottom connecting line
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA =(-width / 2, 0),
coordsA = ax2.transData,
xyB =(x, y),
coordsB = ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
plt.show()
输出: