📅  最后修改于: 2023-12-03 15:09:59.772000             🧑  作者: Mango
Johnson算法是一种用于解决所有对最短路径问题的算法。该算法使用了边权重重新计算的技巧,将问题转换为了仅仅需要单源最短路径问题。在对每个源点执行单源最短路径算法之后,我们就可以得到所有对最短路径了。
以下代码是使用Python实现的Johnson算法:
import math
def johnson(graph):
nodes = graph.keys()
s = 's'
new_graph = graph.copy()
for node in nodes:
new_graph[s][node] = 0
h = bellman_ford(new_graph, s)
if not h:
return None
for from_node in nodes:
for to_node in graph[from_node]:
graph[from_node][to_node] += h[from_node] - h[to_node]
result = {}
for node in nodes:
result[node] = dijkstra(graph, node)
for target_node in result[node]:
result[node][target_node] += h[target_node] - h[node]
return result
def bellman_ford(graph, start):
nodes = graph.keys()
distance = dict.fromkeys(nodes, float('inf'))
distance[start] = 0
for i in range(len(nodes) - 1):
for u in nodes:
for v in graph[u]:
new_distance = distance[u] + graph[u][v]
if distance[v] > new_distance:
distance[v] = new_distance
for u in nodes:
for v in graph[u]:
if distance[v] > distance[u] + graph[u][v]:
return None
return distance
def dijkstra(graph, start):
nodes = graph.keys()
distance = dict.fromkeys(nodes, float('inf'))
previous = dict.fromkeys(nodes, None)
distance[start] = 0
not_visited_nodes = nodes.copy()
while not_visited_nodes:
current = min(not_visited_nodes, key=lambda x: distance[x])
not_visited_nodes.remove(current)
for neighbour in graph[current]:
new_distance = distance[current] + graph[current][neighbour]
if new_distance < distance[neighbour]:
distance[neighbour] = new_distance
previous[neighbour] = current
return distance
Johnson算法是一种用于解决所有对最短路径问题的算法。它通过重新计算边权重的方式,将问题转换为单源最短路径问题,最后再对每个源点执行单源最短路径算法,得到所有对最短路径。虽然算法的时间复杂度为O(V^2logV+ElogV),但它可以处理负权边和负环路的问题,因此在实际应用中仍然具有重要的价值。