📅  最后修改于: 2023-12-03 14:59:10.148000             🧑  作者: Mango
A搜索算法是一种启发式搜索算法,可以用于在图形地图上寻找最短路径。它结合了广度优先搜索和贪心算法的优点,可以更快地找到最优解。在本文中,将介绍A搜索算法如何工作以及如何在代码中实现。
A搜索算法使用估价函数来评估每个节点的代价。估价函数使用两个因素来计算代价:从起始节点到该节点的已知代价(称为g值)和从该节点到目标节点的估计代价(称为h值)。A算法将这些代价相加得到节点的总代价f值。选择总代价最小的节点进行扩展。在搜索过程中,A算法会维护一个开放列表和一个关闭列表。开放列表包含待访问的节点,而关闭列表包含已经访问过的节点。每当从开放列表中选取一个节点来扩展时,A算法将该节点移到关闭列表中,并从其邻居中选取最小的f值来进行扩展。如果下一个节点已经在开放列表中,则更新该节点的代价。
以下是A*搜索算法的伪代码:
function A*(start,goal)
closedset := the empty set // 已被访问的节点集合
openset := {start} // 待访问的节点集合,初始化为起始节点
came_from := the empty map // 储存路径
g_score[start] := 0 // 起始节点到起始节点的已知代价为0
h_score[start] := heuristic_cost_estimate(start, goal) // 从起始节点到目标节点的估计代价
f_score[start] := h_score[start] // 起始节点到目标节点的总代价
while openset is not empty
current := the node in openset having the lowest f_score[] value
if current = goal // 到达目标节点
return reconstruct_path(came_from, goal)
remove current from openset
add current to closedset
for each neighbor of current
if neighbor in closedset
continue // 忽略已经被访问过的节点
tentative_g_score := g_score[current] + dist_between(current, neighbor) // 通过当前节点到达邻居节点的已知代价
if neighbor not in openset
add neighbor to openset
tentative_is_better := true // 第一次访问到该节点,更新代价
else if tentative_g_score < g_score[neighbor]
tentative_is_better := true // 最优路径应该被更新
else
tentative_is_better := false
if tentative_is_better = true
came_from[neighbor] := current
g_score[neighbor] := tentative_g_score
h_score[neighbor] := heuristic_cost_estimate(neighbor, goal)
f_score[neighbor] := g_score[neighbor] + h_score[neighbor]
return failure
以下是使用Python编写的示例代码:
def A_star(start,goal,neighbors_fn,heuristic_fn):
closedset = set() # 已被访问的节点集合
openset = {start} # 待访问的节点集合,初始化为起始节点
came_from = {} # 储存路径
g_score = {start:0} # 起始节点到起始节点的已知代价为0
h_score = {start:heuristic_fn(start,goal)} # 从起始节点到目标节点的估计代价
f_score = {start:g_score[start] + h_score[start]} # 起始节点到目标节点的总代价
while openset:
current = min(openset, key = lambda node: f_score[node]) # 找到当前待访问节点
if current == goal: # 到达目标节点
return reconstruct_path(came_from,goal)
openset.remove(current)
closedset.add(current)
for neighbor in neighbors_fn(current):
if neighbor in closedset:
continue
tentative_g_score = g_score[current] + dist_between(current,neighbor) # 通过当前节点到达邻居节点的已知代价
if neighbor not in openset:
openset.add(neighbor)
tentative_is_better = True
elif tentative_g_score < g_score[neighbor]:
tentative_is_better = True
else:
tentative_is_better = False
if tentative_is_better:
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
h_score[neighbor] = heuristic_fn(neighbor,goal)
f_score[neighbor] = g_score[neighbor] + h_score[neighbor]
return None
A搜索算法是一种快速的寻找最短路径的算法。它使用估价函数来评估每个节点的代价,从而更快地找到最优解。如果您需要在地图或网络中寻找最短路径,可以使用A算法来实现。