📜  人工智能搜索算法(1)

📅  最后修改于: 2023-12-03 14:49:07.728000             🧑  作者: Mango

人工智能搜索算法

人工智能搜索算法是一类运用人工智能技术,通过建立问题的模型,在问题的状态空间中搜索最佳解的算法。这类算法广泛应用于人工智能领域的各个子领域中,如机器学习、数据挖掘等。

常见的人工智能搜索算法
  • 深度优先搜索(DFS)
  • 广度优先搜索(BFS)
  • 一致代价搜索(UCS)
  • A*搜索算法
  • 爬山算法
  • 遗传算法
  • 人工神经网络
深度优先搜索(DFS)

深度优先搜索算法是一种盲目搜索算法,是从该问题的一个初始结点开始,一直搜索到图中某一目标结点,或者无法到达任何目标结点时才停止。DFS 通过一系列先进后出的堆栈来实现搜索过程,它的搜索顺序是从当前顶点的邻接顶点中选择一个顶点放入栈中,然后以该顶点作为起点再递归搜索。

def dfs(graph, start, goal):
    visited = set()
    stack = [start]

    while stack:
        vertex = stack.pop()
        if vertex == goal:
            return True

        visited.add(vertex)

        for neighbor in graph[vertex]:
            if neighbor not in visited:
                stack.append(neighbor)

    return False
广度优先搜索(BFS)

广度优先搜索算法是一种盲目搜索算法,是从该问题的一个初始结点开始,按照广度优先遍历图的顺序逐个搜索各个结点,直到到达图中目标结点或者未搜索到为止。BFS 通过一系列先进先出的队列来实现搜索过程,它的搜索顺序是从当前顶点的邻接顶点中选择一个顶点放入队列中,然后取出队列头顶点再递归搜索。

from collections import deque

def bfs(graph, start, goal):
    visited = set()
    queue = deque([start])

    while queue:
        vertex = queue.popleft()
        if vertex == goal:
            return True

        visited.add(vertex)

        for neighbor in graph[vertex]:
            if neighbor not in visited:
                queue.append(neighbor)

    return False
一致代价搜索(UCS)

一致代价搜索算法是一种启发式搜索算法,是从该问题的一个初始结点开始,按照代价从小到大的顺序逐步搜索各个结点,直到到达图中目标结点或者未搜索到为止。UCS 通过优先队列来实现搜索过程,它的搜索顺序是根据优先级依次取出最小代价的结点进行扩展搜索。

from queue import PriorityQueue

def ucs(graph, start, goal):
    visited = set()
    pq = PriorityQueue()
    pq.put((0, [start]))

    while pq:
        (cost, path) = pq.get()
        vertex = path[-1]

        if vertex == goal:
            return path

        visited.add(vertex)

        for neighbor in graph[vertex]:
            if neighbor not in visited:
                new_cost = cost + graph[vertex][neighbor]
                new_path = path + [neighbor]
                pq.put((new_cost, new_path))

    return None
A*搜索算法

A* 搜索算法是一种启发式搜索算法,是在 UCS 算法的基础上加上启发式函数求出优先级,从而使搜索过程更加智能化。A* 通过优先队列来实现搜索过程,它的搜索顺序是根据优先级依次取出最小代价的结点进行扩展搜索。

def heuristic(node, goal):
    return abs(node[0] - goal[0]) + abs(node[1] - goal[1])

def astar(graph, start, goal):
    visited = set()
    pq = PriorityQueue()
    pq.put((0, start))

    while pq:
        (cost, node) = pq.get()

        if node == goal:
            return True

        visited.add(node)

        for neighbor in graph[node]:
            if neighbor not in visited:
                new_cost = cost + graph[node][neighbor] + heuristic(neighbor, goal)
                pq.put((new_cost, neighbor))

    return False
爬山算法

爬山算法是一种局部搜索算法,是在当前解的相邻解中搜索最优解的过程。爬山算法以一定的随机性向搜索空间中的最大值点爬升,能够找到一个局部最优解,但不能保证找到全局最优解。

import random

def hillclimbing(start_state, next_states, objective_fn):
    current_state = start_state
    current_cost = objective_fn(current_state)

    while True:
        neighbors = next_states(current_state)
        neighbor_costs = [objective_fn(n) for n in neighbors]

        if all(nc >= current_cost for nc in neighbor_costs):
            return current_state

        best_neighbor = neighbors[neighbor_costs.index(max(neighbor_costs))]

        if objective_fn(best_neighbor) >= current_cost:
            return best_neighbor

        current_state = best_neighbor
        current_cost = objective_fn(best_neighbor)
遗传算法

遗传算法是一种优化算法,使用领域特定的创新和组合以进一步提高每一代种群的适应性。种群中每个个体都包含了一组潜在解的变量,并以遗传算子进行“交叉”和“变异”,以产生新的个体,从而不断提高种群性能。

import random

def genetic_algorithm(population, fitness_fn, gene_pool, f_thres, max_gens):
    best_individual = None
    best_fitness = float('-inf')

    for i in range(max_gens):
        mutated_population = []

        for individual in population:
            mutated_individual = mutate(individual, gene_pool)
            mutated_population.append(mutated_individual)

        population = crossover(population, mutated_population)

        for i, individual in enumerate(population):
            if fitness_fn(individual) > f_thres:
                return individual

            if fitness_fn(individual) > best_fitness:
                best_individual = individual
                best_fitness = fitness_fn(individual)

    return best_individual

def mutate(individual, gene_pool):
    pos_to_mutate = random.randrange(len(individual))
    new_gene, alternate = random.sample(gene_pool, 2)
    mutated = list(individual)
    mutated[pos_to_mutate] = alternate if new_gene == mutated[pos_to_mutate] else new_gene
    return tuple(mutated)

def crossover(parents1, parents2):
    result = []
    for parent1, parent2 in zip(parents1, parents2):
        pos = random.randrange(len(parent1))
        result.append(parent1[:pos] + parent2[pos:])
    return result
人工神经网络

人工神经网络是一种类比于人脑的计算机程序,通过架构多层的神经元来模拟人类思维的过程。人工神经网络是一种不断学习和优化的算法,它通过反向传播算法不断调整其权重和偏置值,从而使训练集数据的误差最小化。

import numpy as np

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def sigmoid_derivative(x):
    return x * (1 - x)

class NeuralNetwork:
    def __init__(self, layers):
        self.layers = layers
        self.weights = [np.random.randn(layers[i], layers[i+1]) for i in range(len(layers)-1)]
        self.biases = [np.random.randn(layers[i+1]) for i in range(len(layers)-1)]

    def feedforward(self, x):
        a = x
        for w, b in zip(self.weights, self.biases):
            z = np.dot(a, w) + b
            a = sigmoid(z)
        return a

    def backpropagation(self, x, y, lr):
        zs = []
        activations = [x]
        a = x
        for w, b in zip(self.weights, self.biases):
            z = np.dot(a, w) + b
            zs.append(z)
            a = sigmoid(z)
            activations.append(a)

        delta = (activations[-1] - y) * sigmoid_derivative(zs[-1])
        gradients = [np.dot(activations[-2].reshape((-1, 1)), delta.reshape((1, -1)))]
        biases_gradients = [delta]

        for i in range(2, len(self.layers)):
            delta = np.dot(delta, self.weights[-i+1].T) * sigmoid_derivative(zs[-i])
            gradients = [np.dot(activations[-i-1].reshape((-1, 1)), delta.reshape((1, -1)))] + gradients
            biases_gradients = [delta] + biases_gradients

        self.weights -= lr * np.concatenate(gradients)
        self.biases -= lr * np.concatenate(biases_gradients)

    def train(self, x_train, y_train, lr, epochs):
        for i in range(epochs):
            for j in range(len(x_train)):
                x = x_train[j]
                y = y_train[j]
                self.backpropagation(x, y, lr)

    def predict(self, x):
        prediction = self.feedforward(x)
        return np.argmax(prediction)

以上就是常见的人工智能搜索算法的介绍和代码实现,每种算法都有其适用范围和潜在的局限性,具体使用时需要根据问题的特点选择合适的算法。