Python| tensorflow.math.argmax() 方法
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。 argmax() 是 tensorflow 数学模块中的一种方法。此方法用于查找跨轴的最大值。
Syntax:
tensorflow.math.argmax(
input,axes,output_type,name
)
Arguments:
1. input: It is a tensor. Allowed dtypes for this tensor are float32,
float64, int32, uint8, int16, int8, complex64, int64, qint8,
quint8, qint32, bfloat16, uint16, complex128, half, uint32, uint64.
2. axes: It is also a vector. It describes the axes to reduce the tensor.
Allowed dtype are int32 and int64. Also [-rank(input),rank(input)) is the range allowed.
axes=0 is used for vector.
3. output_type: It defines the dtype in which returned result should be.
Allowed values are int32, int64 and the default value is int64.
4. name: It is an optional argument which defines name for the operation.
Return:
A tensor of output_type which contains the indices of the maximum value along the axes.
示例 1:
Python3
# importing the library
import tensorflow as tf
# initializing the constant tensor
a = tf.constant([5,10,5.6,7.9,1,50]) # 50 is the maximum value at index 5
# getting the maximum value index tensor
b = tf.math.argmax(input = a)
# printing the tensor
print('tensor: ',b)
# Evaluating the value of tensor
c = tf.keras.backend.eval(b)
#printing the value
print('value: ',c)
Python3
# importing the library
import tensorflow as tf
# initializing the constant tensor
a = tf.constant(value = [9,8,7,3,5,4,6,2,1],shape = (3,3))
# printing the initialized tensor
print(a)
# getting the maximum value indices tensor
b = tf.math.argmax(input = a)
# printing the tensor
print('Indices Tensor: ',b)
# Evaluating the tensor value
c = tf.keras.backend.eval(b)
# printing the value
print('Indices: ',c)
输出:
tensor: tf.Tensor(5, shape=(), dtype=int64)
value: 5
示例 2:
此示例使用形状 (3,3) 的张量。
Python3
# importing the library
import tensorflow as tf
# initializing the constant tensor
a = tf.constant(value = [9,8,7,3,5,4,6,2,1],shape = (3,3))
# printing the initialized tensor
print(a)
# getting the maximum value indices tensor
b = tf.math.argmax(input = a)
# printing the tensor
print('Indices Tensor: ',b)
# Evaluating the tensor value
c = tf.keras.backend.eval(b)
# printing the value
print('Indices: ',c)
输出:
tf.Tensor(
[[9 8 7]
[3 5 4]
[6 2 1]], shape=(3, 3), dtype=int32)
Indices tensor: tf.Tensor([0 0 0], shape=(3,), dtype=int64)
Indices: [0 0 0]
# maximum value along the axes are 9,8,7 at indices 0,0,0 respectively.