📌  相关文章
📜  Python中的 Matplotlib.axis.Axis.set_animated()函数

📅  最后修改于: 2022-05-13 01:54:54.992000             🧑  作者: Mango

Python中的 Matplotlib.axis.Axis.set_animated()函数

Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。它是Python中用于二维数组图的惊人可视化库,用于处理更广泛的 SciPy 堆栈。

Matplotlib.axis.Axis.set_animated()函数

matplotlib库的axis模块中的axis.set_animated()函数用于设置美工的动画状态。

下面的示例说明了 matplotlib.axis 中的 matplotlib.axis.Axis.set_animated()函数:
示例 1:

Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.pyplot as plt  
import matplotlib.animation as animation  
      
      
data = np.array([[1, 2, 3, 4, 5],   
                 [7, 4, 9, 2, 3]])  
      
fig = plt.figure()  
ax = plt.axes(xlim =(0, 20), ylim =(0, 20))  
      
line, = ax.plot([], [], 'r-')  
annotation = ax.annotate('',  
                         xy =(data[0][0],  
                              data[1][0]))  
      
Axis.set_animated(annotation, True)  
      
def init():  
    return line, annotation  
      
def update(num):  
    newData = np.array([[1 + num,  
                         2 + num // 2,  
                         3,  
                         4 - num // 4,  
                         5 + num],  
                        [7, 4,   
                         9 + num // 3,  
                         2, 3]])  
          
    line.set_data(newData)  
    return line, annotation  
      
anim = animation.FuncAnimation(fig,  
                               update,   
                               frames = 25,  
                               init_func = init,  
                               interval = 60,  
                               blit = True) 
  
fig.suptitle('matplotlib.axis.Axis.set_animated() \
function Example\n', fontweight ="bold")  
    
plt.show()


Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.pyplot as plt  
import matplotlib.animation as animation  
      
      
fig, ax = plt.subplots()  
      
ax.set_xlim([-1, 1])  
ax.set_ylim([-1, 1])  
      
L = 50
theta = np.linspace(0, 2 * np.pi, L)  
r = np.ones_like(theta)  
      
x = r * np.cos(theta)  
y = r * np.sin(theta)  
      
line, = ax.plot(1, 0, 'ro')  
      
annotation = ax.annotate(  
    'annotation', xy =(1, 0), xytext =(-1, 0),  
    arrowprops = {'arrowstyle': "->"}  
)  
Axis.set_animated(annotation, False)  
      
      
def update(i):  
      
    new_x = x[i % L]  
    new_y = y[i % L]  
    line.set_data(new_x, new_y)  
      
    annotation.set_position((-new_x, -new_y))  
    annotation.xy = (new_x, new_y)  
      
    return line, annotation  
      
ani = animation.FuncAnimation(  
    fig, update, interval = 50, blit = False
) 
  
fig.suptitle('matplotlib.axis.Axis.set_animated() \
function Example\n', fontweight ="bold")  
    
plt.show()


输出:

示例 2:

Python3

# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.pyplot as plt  
import matplotlib.animation as animation  
      
      
fig, ax = plt.subplots()  
      
ax.set_xlim([-1, 1])  
ax.set_ylim([-1, 1])  
      
L = 50
theta = np.linspace(0, 2 * np.pi, L)  
r = np.ones_like(theta)  
      
x = r * np.cos(theta)  
y = r * np.sin(theta)  
      
line, = ax.plot(1, 0, 'ro')  
      
annotation = ax.annotate(  
    'annotation', xy =(1, 0), xytext =(-1, 0),  
    arrowprops = {'arrowstyle': "->"}  
)  
Axis.set_animated(annotation, False)  
      
      
def update(i):  
      
    new_x = x[i % L]  
    new_y = y[i % L]  
    line.set_data(new_x, new_y)  
      
    annotation.set_position((-new_x, -new_y))  
    annotation.xy = (new_x, new_y)  
      
    return line, annotation  
      
ani = animation.FuncAnimation(  
    fig, update, interval = 50, blit = False
) 
  
fig.suptitle('matplotlib.axis.Axis.set_animated() \
function Example\n', fontweight ="bold")  
    
plt.show() 

输出: