Python| Pandas DataFrame.ix[ ]
Python是一种用于进行数据分析的出色语言,主要是因为以数据为中心的Python包的奇妙生态系统。 Pandas就是其中之一,它使导入和分析数据变得更加容易。
Pandas DataFrame.ix[ ]
是基于标签和整数的切片技术。除了基于纯标签和基于整数之外,Pandas 还提供了一种使用ix[]
运算符选择和子集对象的混合方法。 ix[]
是最通用的索引器,将支持loc[]
和iloc[]
中的任何输入。
Syntax: DataFrame.ix[ ]
Parameters:
Index Position: Index position of rows in integer or list of integer.
Index label: String or list of string of index label of rows
Returns: Data frame or Series depending on parameters
代码#1:
# importing pandas package
import pandas as geek
# making data frame from csv file
data = geek.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")
# Integer slicing
print("Slicing only rows(till index 4):")
x1 = data.ix[:4, ]
print(x1, "\n")
print("Slicing rows and columns(rows=4, col 1-4, excluding 4):")
x2 = data.ix[:4, 1:4]
print(x2)
输出 :
代码#2:
# importing pandas package
import pandas as geek
# making data frame from csv file
data = geek.read_csv("nba.csv")
# Index slicing on Height column
print("After index slicing:")
x1 = data.ix[10:20, 'Height']
print(x1, "\n")
# Index slicing on Salary column
x2 = data.ix[10:20, 'Salary']
print(x2)
输出:
代码#3:
# importing pandas and numpy
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
columns = ['A', 'B', 'C', 'D'])
print("Original DataFrame: \n" , df)
# Integer slicing
print("\n Slicing only rows:")
print("--------------------------")
x1 = df.ix[:4, ]
print(x1)
print("\n Slicing rows and columns:")
print("----------------------------")
x2 = df.ix[:4, 1:3]
print(x2)
输出 :
代码 #4:
# importing pandas and numpy
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
columns = ['A', 'B', 'C', 'D'])
print("Original DataFrame: \n" , df)
# Integer slicing (printing all the rows of column 'A')
print("\n After index slicing (On 'A'):")
print("--------------------------")
x = df.ix[:, 'A']
print(x)
输出 :