如何连接 Pandas DataFrame 中的列值?
很多时候,我们需要将不同列中的值组合成一列。可以有很多这样的用例,比如将人的名字和姓氏组合在一个列表中,将日、月和年组合成一个日期列等。现在我们将看看如何在帮助下实现这一点的一些例子。
示例 1:在此示例中,我们将把名字和姓氏的两列合并为一个列名。为此,我们将使用地图函数。
import pandas as pd
from pandas import DataFrame
# creating a dictionary of names
Names = {'FirstName':['Suzie','Emily','Mike','Robert'],
'LastName':['Bates','Edwards','Curry','Frost']}
# creating a dataframe from dictionary
df = DataFrame(Names, columns=['FirstName','LastName'])
print(df)
print('\n')
# concatenating the columns
df['Name'] = df['FirstName'].map(str) + ' ' + df['LastName'].map(str)
print(df)
输出:
示例 2:类似地,我们可以连接数据框中的任意数量的列。让我们通过另一个示例来查看将日、月和年的三个不同列连接到单个列 Date 中。
import pandas as pd
from pandas import DataFrame
# creating a dictionary of Dates
Dates = {'Day': [1, 29, 23, 4, 15],
'Month': ['Aug', 'Feb', 'Aug', 'Apr', 'Mar'],
'Year': [1947, 1983, 2007, 2011, 2020]}
# creating a dataframe from dictionary
df = DataFrame(Dates, columns = ['Day', 'Month', 'Year'])
print (df)
print('\n')
# concatenating the columns
df['Date'] = df['Day'].map(str) + '-' + df['Month'].map(str) + '-' + df['Year'].map(str)
print (df)
输出:
示例 3:
我们可以进一步处理这个过程,并连接来自多个不同数据帧的多个列。在此示例中,我们将数据帧 df1 和 df2 的列组合成一个数据帧。
import pandas as pd
from pandas import DataFrame
# creating a dictionary of Dates
Dates = {'Day': [1, 1, 1, 1],
'Month': ['Jan', 'Jan', 'Jan', 'Jan'],
'Year': [2017, 2018, 2019, 2020]}
# creating a dataframe from dictionary
df1 = DataFrame(Dates, columns = ['Day', 'Month', 'Year'])
# creating a dictionary of Rates
Rates = {'GDP': [5.8, 7.6, 5.6, 4.1],
'Inflation Rate': [2.49, 4.85, 7.66, 6.08]}
# creating a dataframe from dictionary
df2 = DataFrame(Rates, columns = ['GDP', 'Inflation Rate'])
# combining columns of df1 and df2
df_combined = df1['Day'].map(str) + '-' + df1['Month'].map(str) + '-' + df1['Year'].map(str) + ': ' + 'GDP: ' + df2['GDP'].map(str) + '; ' + 'Inflation: ' + df2['Inflation Rate'].map(str)
print (df_combined)
输出:
在评论中写代码?请使用 ide.geeksforgeeks.org,生成链接并在此处分享链接。