📜  如何在 Pandas DataFrame 行中搜索值?

📅  最后修改于: 2022-05-13 01:54:58.154000             🧑  作者: Mango

如何在 Pandas DataFrame 行中搜索值?

在本文中,我们将了解如何在Python中搜索 Pandas DataFrame 行中的值。

导入和数据

在这里,我们将导入所需的模块,然后将数据文件作为数据帧读取。

所用数据集的链接在这里

Python3
# importing pandas as ps
import pandas as pd
 
# importing data using .read_csv() method
df = pd.read_csv("data.csv")


Python3
df[df["Purchased"] == "Yes"]
# This line of code will print all rows
# which satisfy the condition df["Purchased"] == "Yes"
 
# In other words df["Purchased"] == "Yes"
# will return a boolean either true or false.
 
# if it returns true then we will print that
# row otherwise we will not print the row.


Python3
df[(df["Age"] >= 35) & (df["Age"] <= 40)]
 
# This line of code will return all
# rows which satisfies both the conditions
# ie value of age >= 35 and value of age <= 40


输出:

搜索值

在这里,我们将在数据框中搜索列名。

我们将在购买列中搜索所有值为“是”的行。

Python3

df[df["Purchased"] == "Yes"]
# This line of code will print all rows
# which satisfy the condition df["Purchased"] == "Yes"
 
# In other words df["Purchased"] == "Yes"
# will return a boolean either true or false.
 
# if it returns true then we will print that
# row otherwise we will not print the row.

输出:

我们还可以使用多个条件来搜索一个值。让我们看一个示例来查找年龄值在 35 到 40 之间的所有行。

Python3

df[(df["Age"] >= 35) & (df["Age"] <= 40)]
 
# This line of code will return all
# rows which satisfies both the conditions
# ie value of age >= 35 and value of age <= 40

输出: