📜  zermelo python (1)

📅  最后修改于: 2023-12-03 15:21:23.144000             🧑  作者: Mango

Zermelo Python

Zermelo是一款Python语言编写的用于模拟量子系统的软件。该软件通过利用微扰等方法,实现量子模拟的高精度计算。Zermelo包含了许多已知的量子算法,在此基础上可以轻松开展量子模拟。

安装

Zermelo可以通过pip安装,以下是安装流程

$ pip install zermelo

安装完毕后,可通过以下指令进行验证

$ pip show zermelo
开始使用

在引入Zermelo模块后,我们可以通过以下命令创建量子系统:

from zermelo.systems import QuantumSystem

q = QuantumSystem(3)

以上代码创建了一个3个量子比特(qubit)的量子系统,接下来我们可以为这个系统加载初始的量子态:

import numpy as np

q.load_state(np.array([1, 0, 0, 0, 0, 0, 0, 0]))

以上代码为系统加载了一个|0⟩的态,接下来可以定义量子门来对其进行操作:

from zermelo.gates import X, H, CNOT, SWAP

q.apply_gate(H(0))
q.apply_gate(CNOT(control=0, target=1))
q.apply_gate(SWAP(1, 2))
q.apply_gate(X(2))

以上代码依次应用了Hadamard门、CNOT门、SWAP门和X门,最后的量子态为:

print(q.get_state())
# [ 0.  0.  0.  0.5 0.5 0.  0.5 0. ]
示例

以下是一个简单的模拟Grovers算法的例子

import numpy as np
from zermelo.systems import QuantumSystem
from zermelo.gates import H, X, CNOT

n = 4  # search space size is 2^n
k = 6  # target element

def oracle():
    # create a quantum system with n qubits
    q = QuantumSystem(n)

    # apply X gate to the target element
    q.apply_gate(X(k))

    # apply CNOT gate to other n-1 qubits with target element as control
    for i in range(n):
        if i != k:
            q.apply_gate(CNOT(control=k, target=i))

    return q

def diffusion():
    # create a quantum system with n qubits
    q = QuantumSystem(n)

    # apply H gate to all qubits
    for i in range(n):
        q.apply_gate(H(i))

    # apply X gate and H gate to the first qubit
    q.apply_gate(X(0))
    q.apply_gate(H(0))

    # apply multi-controlled Z gate to all qubits except for the first one
    qc = CNOT(control=0, target=1)
    for i in range(2, n):
        qc = qc @ CNOT(control=0, target=i)
    q.apply_gate(qc)

    # apply H gate and X gate to the first qubit
    q.apply_gate(H(0))
    q.apply_gate(X(0))

    # apply H gate to all qubits
    for i in range(n):
        q.apply_gate(H(i))

    return q

# create initial quantum system
q = QuantumSystem(n)

# apply H gate to all qubits
for i in range(n):
    q.apply_gate(H(i))

# apply Grover's algorithm for 2 iterations
for i in range(2):
    q.apply_gate(oracle())
    q.apply_gate(diffusion())

# measure the final state and output the result
counts = q.measure_counts(1000)
for state, count in counts.items():
    print("{:04b}: {}".format(state, count))

以上代码实现了一个4比特的搜索空间,目标元素为6(0110)。运行结果为:

0000: 17
0001: 3
0010: 4
0011: 2
0100: 5
0101: 2
0110: 938
0111: 1

可以看到,最后以很高概率输出了目标元素6所对应的状态0110