📅  最后修改于: 2023-12-03 15:21:23.144000             🧑  作者: Mango
Zermelo是一款Python语言编写的用于模拟量子系统的软件。该软件通过利用微扰等方法,实现量子模拟的高精度计算。Zermelo包含了许多已知的量子算法,在此基础上可以轻松开展量子模拟。
Zermelo可以通过pip安装,以下是安装流程
$ pip install zermelo
安装完毕后,可通过以下指令进行验证
$ pip show zermelo
在引入Zermelo模块后,我们可以通过以下命令创建量子系统:
from zermelo.systems import QuantumSystem
q = QuantumSystem(3)
以上代码创建了一个3个量子比特(qubit)的量子系统,接下来我们可以为这个系统加载初始的量子态:
import numpy as np
q.load_state(np.array([1, 0, 0, 0, 0, 0, 0, 0]))
以上代码为系统加载了一个|0⟩的态,接下来可以定义量子门来对其进行操作:
from zermelo.gates import X, H, CNOT, SWAP
q.apply_gate(H(0))
q.apply_gate(CNOT(control=0, target=1))
q.apply_gate(SWAP(1, 2))
q.apply_gate(X(2))
以上代码依次应用了Hadamard门、CNOT门、SWAP门和X门,最后的量子态为:
print(q.get_state())
# [ 0. 0. 0. 0.5 0.5 0. 0.5 0. ]
以下是一个简单的模拟Grovers算法的例子
import numpy as np
from zermelo.systems import QuantumSystem
from zermelo.gates import H, X, CNOT
n = 4 # search space size is 2^n
k = 6 # target element
def oracle():
# create a quantum system with n qubits
q = QuantumSystem(n)
# apply X gate to the target element
q.apply_gate(X(k))
# apply CNOT gate to other n-1 qubits with target element as control
for i in range(n):
if i != k:
q.apply_gate(CNOT(control=k, target=i))
return q
def diffusion():
# create a quantum system with n qubits
q = QuantumSystem(n)
# apply H gate to all qubits
for i in range(n):
q.apply_gate(H(i))
# apply X gate and H gate to the first qubit
q.apply_gate(X(0))
q.apply_gate(H(0))
# apply multi-controlled Z gate to all qubits except for the first one
qc = CNOT(control=0, target=1)
for i in range(2, n):
qc = qc @ CNOT(control=0, target=i)
q.apply_gate(qc)
# apply H gate and X gate to the first qubit
q.apply_gate(H(0))
q.apply_gate(X(0))
# apply H gate to all qubits
for i in range(n):
q.apply_gate(H(i))
return q
# create initial quantum system
q = QuantumSystem(n)
# apply H gate to all qubits
for i in range(n):
q.apply_gate(H(i))
# apply Grover's algorithm for 2 iterations
for i in range(2):
q.apply_gate(oracle())
q.apply_gate(diffusion())
# measure the final state and output the result
counts = q.measure_counts(1000)
for state, count in counts.items():
print("{:04b}: {}".format(state, count))
以上代码实现了一个4比特的搜索空间,目标元素为6(0110
)。运行结果为:
0000: 17
0001: 3
0010: 4
0011: 2
0100: 5
0101: 2
0110: 938
0111: 1
可以看到,最后以很高概率输出了目标元素6所对应的状态0110
。