📜  Python中的 NumPy |第 1 套(介绍)

📅  最后修改于: 2022-05-13 01:54:43.156000             🧑  作者: Mango

Python中的 NumPy |第 1 套(介绍)

本文将帮助您熟悉Python中广泛使用的数组处理库 NumPy。什么是 NumPy? NumPy 是一个通用的数组处理包。它提供了一个高性能的多维数组对象,以及用于处理这些数组的工具。它是使用Python进行科学计算的基础包。它包含各种功能,包括以下重要功能:

  • 强大的 N 维数组对象
  • 复杂的(广播)功能
  • 用于集成 C/C++ 和 Fortran 代码的工具
  • 有用的线性代数、傅里叶变换和随机数功能

除了其明显的科学用途外,NumPy 还可以用作通用数据的高效多维容器。可以使用 Numpy 定义任意数据类型,这允许 NumPy 无缝且快速地与各种数据库集成。安装:

  • MacLinux用户可以通过 pip 命令安装 NumPy:
pip install numpy
  • Windows没有任何类似于 linux 或 mac 中的包管理器。 请从此处下载 NumPy 的预构建 Windows 安装程序(根据您的系统配置和Python版本)。然后手动安装软件包。

注意:下面讨论的所有示例都不会在在线 IDE 上运行。 1、NumPy中的数组: NumPy的主要对象是齐次多维数组。

  • 它是一个元素表(通常是数字),所有类型都相同,由正整数元组索引。
  • 在 NumPy 中,维度称为。轴数为rank
  • NumPy 的数组类称为ndarray 。它也被别名数组知道。

例子 :

[[ 1, 2, 3],
 [ 4, 2, 5]]
Here,
rank = 2 (as it is 2-dimensional or it has 2 axes)
first dimension(axis) length = 2, second dimension has length = 3
overall shape can be expressed as: (2, 3)
Python3
# Python program to demonstrate
# basic array characteristics
import numpy as np
 
# Creating array object
arr = np.array( [[ 1, 2, 3],
                 [ 4, 2, 5]] )
 
# Printing type of arr object
print("Array is of type: ", type(arr))
 
# Printing array dimensions (axes)
print("No. of dimensions: ", arr.ndim)
 
# Printing shape of array
print("Shape of array: ", arr.shape)
 
# Printing size (total number of elements) of array
print("Size of array: ", arr.size)
 
# Printing type of elements in array
print("Array stores elements of type: ", arr.dtype)


Python3
# Python program to demonstrate
# array creation techniques
import numpy as np
 
# Creating array from list with type float
a = np.array([[1, 2, 4], [5, 8, 7]], dtype = 'float')
print ("Array created using passed list:\n", a)
 
# Creating array from tuple
b = np.array((1 , 3, 2))
print ("\nArray created using passed tuple:\n", b)
 
# Creating a 3X4 array with all zeros
c = np.zeros((3, 4))
print ("\nAn array initialized with all zeros:\n", c)
 
# Create a constant value array of complex type
d = np.full((3, 3), 6, dtype = 'complex')
print ("\nAn array initialized with all 6s."
            "Array type is complex:\n", d)
 
# Create an array with random values
e = np.random.random((2, 2))
print ("\nA random array:\n", e)
 
# Create a sequence of integers
# from 0 to 30 with steps of 5
f = np.arange(0, 30, 5)
print ("\nA sequential array with steps of 5:\n", f)
 
# Create a sequence of 10 values in range 0 to 5
g = np.linspace(0, 5, 10)
print ("\nA sequential array with 10 values between"
                                        "0 and 5:\n", g)
 
# Reshaping 3X4 array to 2X2X3 array
arr = np.array([[1, 2, 3, 4],
                [5, 2, 4, 2],
                [1, 2, 0, 1]])
 
newarr = arr.reshape(2, 2, 3)
 
print ("\nOriginal array:\n", arr)
print ("Reshaped array:\n", newarr)
 
# Flatten array
arr = np.array([[1, 2, 3], [4, 5, 6]])
flarr = arr.flatten()
 
print ("\nOriginal array:\n", arr)
print ("Fattened array:\n", flarr)


Python3
# Python program to demonstrate
# indexing in numpy
import numpy as np
 
# An exemplar array
arr = np.array([[-1, 2, 0, 4],
                [4, -0.5, 6, 0],
                [2.6, 0, 7, 8],
                [3, -7, 4, 2.0]])
 
# Slicing array
temp = arr[:2, ::2]
print ("Array with first 2 rows and alternate"
                    "columns(0 and 2):\n", temp)
 
# Integer array indexing example
temp = arr[[0, 1, 2, 3], [3, 2, 1, 0]]
print ("\nElements at indices (0, 3), (1, 2), (2, 1),"
                                    "(3, 0):\n", temp)
 
# boolean array indexing example
cond = arr > 0 # cond is a boolean array
temp = arr[cond]
print ("\nElements greater than 0:\n", temp)


Python3
# Python program to demonstrate
# basic operations on single array
import numpy as np
 
a = np.array([1, 2, 5, 3])
 
# add 1 to every element
print ("Adding 1 to every element:", a+1)
 
# subtract 3 from each element
print ("Subtracting 3 from each element:", a-3)
 
# multiply each element by 10
print ("Multiplying each element by 10:", a*10)
 
# square each element
print ("Squaring each element:", a**2)
 
# modify existing array
a *= 2
print ("Doubled each element of original array:", a)
 
# transpose of array
a = np.array([[1, 2, 3], [3, 4, 5], [9, 6, 0]])
 
print ("\nOriginal array:\n", a)
print ("Transpose of array:\n", a.T)


Python3
# Python program to demonstrate
# unary operators in numpy
import numpy as np
 
arr = np.array([[1, 5, 6],
                [4, 7, 2],
                [3, 1, 9]])
 
# maximum element of array
print ("Largest element is:", arr.max())
print ("Row-wise maximum elements:",
                    arr.max(axis = 1))
 
# minimum element of array
print ("Column-wise minimum elements:",
                        arr.min(axis = 0))
 
# sum of array elements
print ("Sum of all array elements:",
                            arr.sum())
 
# cumulative sum along each row
print ("Cumulative sum along each row:\n",
                        arr.cumsum(axis = 1))


Python3
# Python program to demonstrate
# binary operators in Numpy
import numpy as np
 
a = np.array([[1, 2],
            [3, 4]])
b = np.array([[4, 3],
            [2, 1]])
 
# add arrays
print ("Array sum:\n", a + b)
 
# multiply arrays (elementwise multiplication)
print ("Array multiplication:\n", a*b)
 
# matrix multiplication
print ("Matrix multiplication:\n", a.dot(b))


Python3
# Python program to demonstrate
# universal functions in numpy
import numpy as np
 
# create an array of sine values
a = np.array([0, np.pi/2, np.pi])
print ("Sine values of array elements:", np.sin(a))
 
# exponential values
a = np.array([0, 1, 2, 3])
print ("Exponent of array elements:", np.exp(a))
 
# square root of array values
print ("Square root of array elements:", np.sqrt(a))


Python3
# Python program to demonstrate sorting in numpy
import numpy as np
 
a = np.array([[1, 4, 2],
                 [3, 4, 6],
              [0, -1, 5]])
 
# sorted array
print ("Array elements in sorted order:\n",
                    np.sort(a, axis = None))
 
# sort array row-wise
print ("Row-wise sorted array:\n",
                np.sort(a, axis = 1))
 
# specify sort algorithm
print ("Column wise sort by applying merge-sort:\n",
            np.sort(a, axis = 0, kind = 'mergesort'))
 
# Example to show sorting of structured array
# set alias names for dtypes
dtypes = [('name', 'S10'), ('grad_year', int), ('cgpa', float)]
 
# Values to be put in array
values = [('Hrithik', 2009, 8.5), ('Ajay', 2008, 8.7),
           ('Pankaj', 2008, 7.9), ('Aakash', 2009, 9.0)]
            
# Creating array
arr = np.array(values, dtype = dtypes)
print ("\nArray sorted by names:\n",
            np.sort(arr, order = 'name'))
             
print ("Array sorted by graduation year and then cgpa:\n",
                np.sort(arr, order = ['grad_year', 'cgpa']))


输出 :

Array is of type:  
No. of dimensions:  2
Shape of array:  (2, 3)
Size of array:  6
Array stores elements of type:  int64

2. 数组创建:在 NumPy 中有多种创建数组的方法。

  • 例如,您可以使用数组函数从常规Python列表元组创建数组。结果数组的类型是从序列中元素的类型推导出来的。
  • 通常,数组的元素最初是未知的,但它的大小是已知的。因此,NumPy 提供了几个函数来创建具有初始占位符内容的数组。这些最大限度地减少了增长阵列的必要性,这是一项昂贵的操作。例如: np.zeros、np.ones、np.full、np.empty 等。
  • 为了创建数字序列,NumPy 提供了一个类似于 range 的函数,它返回数组而不是列表。
  • arange:返回给定间隔内均匀分布的值。长是指定的。
  • linspace:返回给定间隔内均匀分布的值。编号的元素被返回。
  • 重塑数组:我们可以使用reshape方法来重塑数组。考虑一个形状为 (a1, a2, a3, ..., aN) 的数组。我们可以重新整形并将其转换为另一个形状为 (b1, b2, b3, ..., bM) 的数组。唯一需要的条件是: a1 x a2 x a3 … x aN = b1 x b2 x b3 … x bM 。 (即数组的原始大小保持不变。)
  • 扁平化数组:我们可以使用扁平化方法将数组的副本折叠成一维。它接受order参数。默认值为“C”(用于行优先顺序)。使用“F”表示列主要顺序。

注意:数组的类型可以在创建数组时显式定义。

Python3

# Python program to demonstrate
# array creation techniques
import numpy as np
 
# Creating array from list with type float
a = np.array([[1, 2, 4], [5, 8, 7]], dtype = 'float')
print ("Array created using passed list:\n", a)
 
# Creating array from tuple
b = np.array((1 , 3, 2))
print ("\nArray created using passed tuple:\n", b)
 
# Creating a 3X4 array with all zeros
c = np.zeros((3, 4))
print ("\nAn array initialized with all zeros:\n", c)
 
# Create a constant value array of complex type
d = np.full((3, 3), 6, dtype = 'complex')
print ("\nAn array initialized with all 6s."
            "Array type is complex:\n", d)
 
# Create an array with random values
e = np.random.random((2, 2))
print ("\nA random array:\n", e)
 
# Create a sequence of integers
# from 0 to 30 with steps of 5
f = np.arange(0, 30, 5)
print ("\nA sequential array with steps of 5:\n", f)
 
# Create a sequence of 10 values in range 0 to 5
g = np.linspace(0, 5, 10)
print ("\nA sequential array with 10 values between"
                                        "0 and 5:\n", g)
 
# Reshaping 3X4 array to 2X2X3 array
arr = np.array([[1, 2, 3, 4],
                [5, 2, 4, 2],
                [1, 2, 0, 1]])
 
newarr = arr.reshape(2, 2, 3)
 
print ("\nOriginal array:\n", arr)
print ("Reshaped array:\n", newarr)
 
# Flatten array
arr = np.array([[1, 2, 3], [4, 5, 6]])
flarr = arr.flatten()
 
print ("\nOriginal array:\n", arr)
print ("Fattened array:\n", flarr)

输出 :

Array created using passed list:
 [[ 1.  2.  4.]
 [ 5.  8.  7.]]

Array created using passed tuple:
 [1 3 2]

An array initialized with all zeros:
 [[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]

An array initialized with all 6s. Array type is complex:
 [[ 6.+0.j  6.+0.j  6.+0.j]
 [ 6.+0.j  6.+0.j  6.+0.j]
 [ 6.+0.j  6.+0.j  6.+0.j]]

A random array:
 [[ 0.46829566  0.67079389]
 [ 0.09079849  0.95410464]]

A sequential array with steps of 5:
 [ 0  5 10 15 20 25]

A sequential array with 10 values between 0 and 5:
 [ 0.          0.55555556  1.11111111  1.66666667  2.22222222  2.77777778
  3.33333333  3.88888889  4.44444444  5.        ]

Original array:
 [[1 2 3 4]
 [5 2 4 2]
 [1 2 0 1]]
Reshaped array:
 [[[1 2 3]
  [4 5 2]]

 [[4 2 1]
  [2 0 1]]]

Original array:
 [[1 2 3]
 [4 5 6]]
Fattened array:
 [1 2 3 4 5 6]

3. 数组索引:了解数组索引的基础知识对于分析和操作数组对象很重要。 NumPy 提供了许多方法来进行数组索引。

  • 切片:就像Python中的列表一样,NumPy 数组可以被切片。由于数组可以是多维的,因此您需要为数组的每个维度指定一个切片。
  • 整数数组索引:在此方法中,传递列表以对每个维度进行索引。完成对应元素的一对一映射以构造一个新的任意数组。
  • 布尔数组索引:当我们想从数组中选择满足某些条件的元素时使用此方法。

Python3

# Python program to demonstrate
# indexing in numpy
import numpy as np
 
# An exemplar array
arr = np.array([[-1, 2, 0, 4],
                [4, -0.5, 6, 0],
                [2.6, 0, 7, 8],
                [3, -7, 4, 2.0]])
 
# Slicing array
temp = arr[:2, ::2]
print ("Array with first 2 rows and alternate"
                    "columns(0 and 2):\n", temp)
 
# Integer array indexing example
temp = arr[[0, 1, 2, 3], [3, 2, 1, 0]]
print ("\nElements at indices (0, 3), (1, 2), (2, 1),"
                                    "(3, 0):\n", temp)
 
# boolean array indexing example
cond = arr > 0 # cond is a boolean array
temp = arr[cond]
print ("\nElements greater than 0:\n", temp)

输出 :

Array with first 2 rows and alternatecolumns(0 and 2):
 [[-1.  0.]
 [ 4.  6.]]

Elements at indices (0, 3), (1, 2), (2, 1),(3, 0):
 [ 4.  6.  0.  3.]

Elements greater than 0:
 [ 2.   4.   4.   6.   2.6  7.   8.   3.   4.   2. ]

4. 基本运算: NumPy 提供了大量的内置算术函数。

  • 对单个数组的操作:我们可以使用重载的算术运算运算符对数组进行元素操作以创建一个新数组。对于 +=、-=、*=运算符,将修改现有数组。

Python3

# Python program to demonstrate
# basic operations on single array
import numpy as np
 
a = np.array([1, 2, 5, 3])
 
# add 1 to every element
print ("Adding 1 to every element:", a+1)
 
# subtract 3 from each element
print ("Subtracting 3 from each element:", a-3)
 
# multiply each element by 10
print ("Multiplying each element by 10:", a*10)
 
# square each element
print ("Squaring each element:", a**2)
 
# modify existing array
a *= 2
print ("Doubled each element of original array:", a)
 
# transpose of array
a = np.array([[1, 2, 3], [3, 4, 5], [9, 6, 0]])
 
print ("\nOriginal array:\n", a)
print ("Transpose of array:\n", a.T)

输出 :

Adding 1 to every element: [2 3 6 4]
Subtracting 3 from each element: [-2 -1  2  0]
Multiplying each element by 10: [10 20 50 30]
Squaring each element: [ 1  4 25  9]
Doubled each element of original array: [ 2  4 10  6]

Original array:
 [[1 2 3]
 [3 4 5]
 [9 6 0]]
Transpose of array:
 [[1 3 9]
 [2 4 6]
 [3 5 0]]
  • 一元运算符:许多一元运算作为ndarray类的方法提供。这包括 sum、min、max 等。这些函数也可以通过设置轴参数来逐行或逐列应用。

Python3

# Python program to demonstrate
# unary operators in numpy
import numpy as np
 
arr = np.array([[1, 5, 6],
                [4, 7, 2],
                [3, 1, 9]])
 
# maximum element of array
print ("Largest element is:", arr.max())
print ("Row-wise maximum elements:",
                    arr.max(axis = 1))
 
# minimum element of array
print ("Column-wise minimum elements:",
                        arr.min(axis = 0))
 
# sum of array elements
print ("Sum of all array elements:",
                            arr.sum())
 
# cumulative sum along each row
print ("Cumulative sum along each row:\n",
                        arr.cumsum(axis = 1))

输出 :

Largest element is: 9
Row-wise maximum elements: [6 7 9]
Column-wise minimum elements: [1 1 2]
Sum of all array elements: 38
Cumulative sum along each row:
[[ 1  6 12]
 [ 4 11 13]
 [ 3  4 13]]
  • 二元运算符:这些操作适用于数组元素并创建一个新数组。您可以使用所有基本的算术运算运算符,如 +、-、/、等。在 +=、-=、 =运算符的情况下,将修改现有数组。

Python3

# Python program to demonstrate
# binary operators in Numpy
import numpy as np
 
a = np.array([[1, 2],
            [3, 4]])
b = np.array([[4, 3],
            [2, 1]])
 
# add arrays
print ("Array sum:\n", a + b)
 
# multiply arrays (elementwise multiplication)
print ("Array multiplication:\n", a*b)
 
# matrix multiplication
print ("Matrix multiplication:\n", a.dot(b))

输出:

Array sum:
[[5 5]
 [5 5]]
Array multiplication:
[[4 6]
 [6 4]]
Matrix multiplication:
[[ 8  5]
 [20 13]]
  • 通用函数 (ufunc): NumPy 提供熟悉的数学函数,例如 sin、cos、exp 等。这些函数还对数组进行元素操作,生成数组作为输出。

注意:我们上面使用重载运算符所做的所有操作都可以使用 ufunc 完成,例如 np.add、np.subtract、np.multiply、np.divide、np.sum 等。

Python3

# Python program to demonstrate
# universal functions in numpy
import numpy as np
 
# create an array of sine values
a = np.array([0, np.pi/2, np.pi])
print ("Sine values of array elements:", np.sin(a))
 
# exponential values
a = np.array([0, 1, 2, 3])
print ("Exponent of array elements:", np.exp(a))
 
# square root of array values
print ("Square root of array elements:", np.sqrt(a))

输出:

Sine values of array elements: [  0.00000000e+00   1.00000000e+00   1.22464680e-16]
Exponent of array elements: [  1.           2.71828183   7.3890561   20.08553692]
Square root of array elements: [ 0.          1.          1.41421356  1.73205081]

4. 排序数组:有一个简单的np.sort方法可以对 NumPy 数组进行排序。让我们稍微探索一下。

Python3

# Python program to demonstrate sorting in numpy
import numpy as np
 
a = np.array([[1, 4, 2],
                 [3, 4, 6],
              [0, -1, 5]])
 
# sorted array
print ("Array elements in sorted order:\n",
                    np.sort(a, axis = None))
 
# sort array row-wise
print ("Row-wise sorted array:\n",
                np.sort(a, axis = 1))
 
# specify sort algorithm
print ("Column wise sort by applying merge-sort:\n",
            np.sort(a, axis = 0, kind = 'mergesort'))
 
# Example to show sorting of structured array
# set alias names for dtypes
dtypes = [('name', 'S10'), ('grad_year', int), ('cgpa', float)]
 
# Values to be put in array
values = [('Hrithik', 2009, 8.5), ('Ajay', 2008, 8.7),
           ('Pankaj', 2008, 7.9), ('Aakash', 2009, 9.0)]
            
# Creating array
arr = np.array(values, dtype = dtypes)
print ("\nArray sorted by names:\n",
            np.sort(arr, order = 'name'))
             
print ("Array sorted by graduation year and then cgpa:\n",
                np.sort(arr, order = ['grad_year', 'cgpa']))

输出:

Array elements in sorted order:
[-1  0  1  2  3  4  4  5  6]
Row-wise sorted array:
[[ 1  2  4]
 [ 3  4  6]
 [-1  0  5]]
Column wise sort by applying merge-sort:
[[ 0 -1  2]
 [ 1  4  5]
 [ 3  4  6]]

Array sorted by names:
[('Aakash', 2009, 9.0) ('Ajay', 2008, 8.7) ('Hrithik', 2009, 8.5)
 ('Pankaj', 2008, 7.9)]
Array sorted by graduation year and then cgpa:
[('Pankaj', 2008, 7.9) ('Ajay', 2008, 8.7) ('Hrithik', 2009, 8.5)
 ('Aakash', 2009, 9.0)]