单链表递归选择排序的Java程序——交换节点链接
给定一个包含n 个节点的单链表。问题是使用递归选择排序技术对列表进行排序。该方法应该涉及交换节点链接而不是交换节点数据。
例子:
Input: 10 -> 12 -> 8 -> 4 -> 6
Output: 4 -> 6 -> 8 -> 10 -> 12
在选择排序中,我们首先找到最小元素,将其与开始节点交换,并为剩余的列表递归。下面是链表这些步骤的递归实现。
recurSelectionSort(head)
if head->next == NULL
return head
Initialize min = head
Initialize beforeMin = NULL
Initialize ptr = head
while ptr->next != NULL
if min->data > ptr->next->data
min = ptr->next
beforeMin = ptr
ptr = ptr->next
if min != head
swapNodes(&head, head, min, beforeMin)
head->next = recurSelectionSort(head->next)
return head
swapNodes(head_ref, currX, currY, prevY)
head_ref = currY
prevY->next = currX
Initialize temp = currY->next
currY->next = currX->next
currX->next = temp
swapNodes(head_ref, currX, currY, prevY)基于此处讨论的方法,但已针对本文的实施进行了相应修改。
Java
// Java implementation of recursive
// selection sort for singly linked
// list | Swapping node links
class GFG{
// A Linked list node
static class Node
{
int data;
Node next;
};
// Function to swap nodes 'currX'
// and 'currY' in a linked list
// without swapping data
static Node swapNodes(Node head_ref,
Node currX,
Node currY,
Node prevY)
{
// Make 'currY' as new head
head_ref = currY;
// Adjust links
prevY.next = currX;
// Swap next pointers
Node temp = currY.next;
currY.next = currX.next;
currX.next = temp;
return head_ref;
}
// function to sort the linked list using
// recursive selection sort technique
static Node recurSelectionSort(Node head)
{
// If there is only a single node
if (head.next == null)
return head;
// 'min' - pointer to store the node
// having minimum data value
Node min = head;
// 'beforeMin' - pointer to store
// node previous to 'min' node
Node beforeMin = null;
Node ptr;
// Traverse the list till the
// last node
for (ptr = head; ptr.next != null;
ptr = ptr.next)
{
// If true, then update 'min' and
// 'beforeMin'
if (ptr.next.data < min.data)
{
min = ptr.next;
beforeMin = ptr;
}
}
// If 'min' and 'head' are not same,
// swap the head node with the 'min' node
if (min != head)
head = swapNodes(head, head,
min, beforeMin);
// Recursively sort the remaining list
head.next =
recurSelectionSort(head.next);
return head;
}
// Function to sort the given linked list
static Node sort(Node head_ref)
{
// If list is empty
if ((head_ref) == null)
return null;
// Sort the list using recursive
// selection sort technique
head_ref = recurSelectionSort(head_ref);
return head_ref;
}
// Function to insert a node at the
// beginning of the linked list
static Node push(Node head_ref,
int new_data)
{
// Allocate node
Node new_node = new Node();
// Put in the data
new_node.data = new_data;
// Link the old list to the
// new node
new_node.next = (head_ref);
// Move the head to point to the
// new node
(head_ref) = new_node;
return head_ref;
}
// Function to print the linked list
static void printList( Node head)
{
while (head != null)
{
System.out.print(head.data + " ");
head = head.next;
}
}
// Driver code
public static void main(String args[])
{
Node head = null;
// Create linked list 10.12.8.4.6
head = push(head, 6);
head = push(head, 4);
head = push(head, 8);
head = push(head, 12);
head = push(head, 10);
System.out.println(
"Linked list before sorting:");
printList(head);
// sort the linked list
head = sort(head);
System.out.print(
"Linked list after sorting:");
printList(head);
}
}
// This code is contributed by Arnab Kundu
输出:
Linked list before sorting:
10 12 8 4 6
Linked list after sorting:
4 6 8 10 12
时间复杂度: O(n 2 )
辅助空间: O(n)
请参阅关于单链表递归选择排序的完整文章 |交换节点链接以获取更多详细信息!