📜  Python中的 numpy.array_equiv()

📅  最后修改于: 2022-05-13 01:55:40.376000             🧑  作者: Mango

Python中的 numpy.array_equiv()

numpy.array_equiv(arr1, arr2) :此逻辑函数检查两个数组是否具有相同的元素和形状是否一致。

形状一致意味着它们具有相同的形状,或者可以广播一个输入数组以创建与另一个相同的形状。

参数 :

arr1    : [array_like]Input array, we need to test.
arr2    : [array_like]Input array, we need to test.

返回 :

True, if both arrays are equivalent; otherwise False


代码:解释工作

# Python program explaining
# array_equiv() function
import numpy as np
  
# input
arr1 = np.arange(4)
arr2 = [7, 4, 6, 7]
print ("arr1 : ", arr1)
print ("arr2 : ", arr2)
  
print ("\nResult : ", np.array_equiv(arr1, arr2))
  
arr1 = np.arange(4)
arr2 = np.arange(4)
print ("\n\narr1 : ", arr1)
print ("arr2 : ", arr2)
  
print ("\nResult : ", np.array_equiv(arr1, arr2))
  
arr1 = np.arange(4)
arr2 = np.arange(5)
print ("\n\narr1 : ", arr1)
print ("arr2 : ", arr2)
  
print ("\nResult : ", np.array_equiv(arr1, arr2))
  
  
a = np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
  
b = np.array_equiv([1, 2], [[1, 2], [1, 2]])
  
print ("\n\na : ", a)
print ("\nb : ", b)

输出 :

arr1 :  [0 1 2 3]
arr2 :  [7, 4, 6, 7]

Result :  False


arr1 :  [0 1 2 3]
arr2 :  [0 1 2 3]

Result :  True


arr1 :  [0 1 2 3]
arr2 :  [0 1 2 3 4]

Result :  False


a :  False

b :  True

参考 :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array_equiv.html#numpy.array_equiv
.