📌  相关文章
📜  二叉搜索树中具有给定总和的对的数量

📅  最后修改于: 2021-05-24 23:52:10             🧑  作者: Mango

给定二叉搜索树和数字X。任务是找到BST中不同节点的不同对的数量,其总和等于X。没有两个节点具有相同的值。

例子:

Input : X = 5
          5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8    
Output : 1
{2, 3} is the only possible pair. 
Thus, the answer is equal to 1.

Input : X = 6
      1
       \
        2
         \
          3
           \
            4
             \
              5
   
Output : 2
Possible pairs are {{1, 5}, {2, 4}}.

天真的方法:想法是散列BST的所有元素或将BST转换为排序的数组。之后,使用此处给出的算法找到对的数量。
时间复杂度: O(N)。
空间复杂度: O(N)。

空间优化方法:想法是在BST上使用两个指针技术。维护向前和向后的迭代器,分别以有序遍历和反向有序遍历的顺序对BST进行迭代。

  1. 为BST创建前进和后退迭代器。假设它们指向的节点的值分别等于v 1和v 2
  2. 现在在每一步
    • 如果v 1 + v 2 = X,则找到该对,因此将计数增加1。
    • 如果v 1 + v 2小于或等于x,我们将使迭代器指向下一个元素。
    • 如果v 1 + v 2大于x,我们将使反向迭代器指向上一个元素。
  3. 重复上述步骤,直到两个迭代器都指向同一节点为止。

下面是上述方法的实现:

C++
// C++ implementation of the approach
#include 
using namespace std;
  
// Node of Binary tree
struct node {
    int data;
    node* left;
    node* right;
    node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
  
// Function to find a pair
int cntPairs(node* root, int x)
{
    // Stack to store nodes for
    // forward and backward iterator
    stack it1, it2;
  
    // Initializing forward iterator
    node* c = root;
    while (c != NULL)
        it1.push(c), c = c->left;
  
    // Initializing backward iterator
    c = root;
    while (c != NULL)
        it2.push(c), c = c->right;
  
    // Variable to store final answer
    int ans = 0;
  
    // two pointer technique
    while (it1.top() != it2.top()) {
  
        // Variables to store the
        // value of the nodes current
        // iterators are pointing to.
        int v1 = it1.top()->data;
        int v2 = it2.top()->data;
  
        // If we find a pair
        // then count is increased by 1
        if (v1 + v2 == x)
            ans++;
  
        // Moving forward iterator
        if (v1 + v2 <= x) {
            c = it1.top()->right;
            it1.pop();
            while (c != NULL)
                it1.push(c), c = c->left;
        }
  
        // Moving backward iterator
        else {
            c = it2.top()->left;
            it2.pop();
            while (c != NULL)
                it2.push(c), c = c->right;
        }
    }
  
    // Returning final answer
    return ans;
}
  
// Driver code
int main()
{
    /*    5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8 */
    node* root = new node(5);
    root->left = new node(3);
    root->right = new node(7);
    root->left->left = new node(2);
    root->left->right = new node(4);
    root->right->left = new node(6);
    root->right->right = new node(8);
  
    int x = 10;
  
    cout << cntPairs(root, x);
  
    return 0;
}


Java
// Java implementation of the approach
import java.util.*;
  
class GFG
{
  
// Node of Binary tree
static class node
{
    int data;
    node left;
    node right;
    node(int data)
    {
        this.data = data;
        left = null;
        right = null;
    }
};
  
// Function to find a pair
static int cntPairs(node root, int x)
{
    // Stack to store nodes for
    // forward and backward iterator
    Stack it1 = new Stack<>();
    Stack it2 = new Stack<>();
  
    // Initializing forward iterator
    node c = root;
    while (c != null)
    {
        it1.push(c);
        c = c.left;
    }
  
    // Initializing backward iterator
    c = root;
    while (c != null)
    {
        it2.push(c);
        c = c.right;
    }
      
    // Variable to store final answer
    int ans = 0;
  
    // two pointer technique
    while (it1.peek() != it2.peek()) 
    {
  
        // Variables to store the
        // value of the nodes current
        // iterators are pointing to.
        int v1 = it1.peek().data;
        int v2 = it2.peek().data;
  
        // If we find a pair
        // then count is increased by 1
        if (v1 + v2 == x)
            ans++;
  
        // Moving forward iterator
        if (v1 + v2 <= x) 
        {
            c = it1.peek().right;
            it1.pop();
            while (c != null)
            {
                it1.push(c);
                c = c.left;
            }
        }
  
        // Moving backward iterator
        else 
        {
            c = it2.peek().left;
            it2.pop();
            while (c != null)
            {
                it2.push(c);
                c = c.right;
            }
        }
    }
  
    // Returning final answer
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    /* 5 
        / \ 
    3     7 
    / \ / \ 
    2 4 6 8 */
    node root = new node(5);
    root.left = new node(3);
    root.right = new node(7);
    root.left.left = new node(2);
    root.left.right = new node(4);
    root.right.left = new node(6);
    root.right.right = new node(8);
  
    int x = 10;
  
    System.out.print(cntPairs(root, x));
}
}
  
// This code is contributed by Rajput-Ji


Python
# Python implementation of above algorithm
  
# Utility class to create a node 
class node: 
    def __init__(self, key): 
        self.data = key 
        self.left = self.right = None
  
# Function to find a pair
def cntPairs( root, x):
  
    # Stack to store nodes for
    # forward and backward iterator
    it1 = []
    it2 = []
  
    # Initializing forward iterator
    c = root
    while (c != None):
        it1.append(c)
        c = c.left
  
    # Initializing backward iterator
    c = root
    while (c != None):
        it2.append(c)
        c = c.right
  
    # Variable to store final answer
    ans = 0
  
    # two pointer technique
    while (it1[-1] != it2[-1]) :
  
        # Variables to store the
        # value of the nodes current
        # iterators are pointing to.
        v1 = it1[-1].data
        v2 = it2[-1].data
  
        # If we find a pair
        # then count is increased by 1
        if (v1 + v2 == x):
            ans=ans+1
  
        # Moving forward iterator
        if (v1 + v2 <= x) :
            c = it1[-1].right
            it1.pop()
            while (c != None):
                it1.append(c)
                c = c.left
          
        # Moving backward iterator
        else :
            c = it2[-1].left
            it2.pop()
            while (c != None):
                it2.append(c)
                c = c.right
          
    # Returning final answer
    return ans
  
# Driver code
  
#         5 
#     / \ 
#     3     7 
#     / \ / \ 
#     2 4 6 8 
root = node(5)
root.left = node(3)
root.right = node(7)
root.left.left = node(2)
root.left.right = node(4)
root.right.left = node(6)
root.right.right = node(8)
  
x = 10
  
print(cntPairs(root, x))
  
# This code is contributed by Arnab Kundu


C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
  
class GFG
{
  
// Node of Binary tree
public class node
{
    public int data;
    public node left;
    public node right;
    public node(int data)
    {
        this.data = data;
        left = null;
        right = null;
    }
};
  
// Function to find a pair
static int cntPairs(node root, int x)
{
    // Stack to store nodes for
    // forward and backward iterator
    Stack it1 = new Stack();
    Stack it2 = new Stack();
  
    // Initializing forward iterator
    node c = root;
    while (c != null)
    {
        it1.Push(c);
        c = c.left;
    }
  
    // Initializing backward iterator
    c = root;
    while (c != null)
    {
        it2.Push(c);
        c = c.right;
    }
      
    // Variable to store readonly answer
    int ans = 0;
  
    // two pointer technique
    while (it1.Peek() != it2.Peek()) 
    {
  
        // Variables to store the
        // value of the nodes current
        // iterators are pointing to.
        int v1 = it1.Peek().data;
        int v2 = it2.Peek().data;
  
        // If we find a pair
        // then count is increased by 1
        if (v1 + v2 == x)
            ans++;
  
        // Moving forward iterator
        if (v1 + v2 <= x) 
        {
            c = it1.Peek().right;
            it1.Pop();
            while (c != null)
            {
                it1.Push(c);
                c = c.left;
            }
        }
  
        // Moving backward iterator
        else
        {
            c = it2.Peek().left;
            it2.Pop();
            while (c != null)
            {
                it2.Push(c);
                c = c.right;
            }
        }
    }
  
    // Returning readonly answer
    return ans;
}
  
// Driver code
public static void Main(String[] args)
{
    /* 5 
        / \ 
    3     7 
    / \ / \ 
    2 4 6 8 */
    node root = new node(5);
    root.left = new node(3);
    root.right = new node(7);
    root.left.left = new node(2);
    root.left.right = new node(4);
    root.right.left = new node(6);
    root.right.right = new node(8);
  
    int x = 10;
  
    Console.Write(cntPairs(root, x));
}
}
  
// This code is contributed by Rajput-Ji


输出:
3

时间复杂度: O(N)
空间复杂度: O(H),其中H是BST的高度

如果您希望与行业专家一起参加现场课程,请参阅《 Geeks现场课程》和《 Geeks现场课程美国》。