用于内存管理的首选算法:分配足以容纳该进程的第一个内存分区。
我们已经在本文中讨论了使用数组的首次拟合算法。但是,这里我们将研究使用链表的另一种方法,其中也可以删除已分配的节点。
例子:
Input: blockSize[] = {100, 500, 200}
processSize[] = {417, 112, 426, 95}
Output:
Block of size 426 can't be allocated
Tag Block ID Size
0 1 417
1 2 112
2 0 95
After deleting block with tag id 0.
Tag Block ID Size
1 2 112
2 0 95
3 1 426
方法:想法是使用带有唯一标签ID的内存块。每个大小不同的进程都被赋予了块ID,该ID表示它们属于哪个内存块,以及唯一的标签ID,以删除特定的进程以释放空间。创建给定内存块大小的空闲列表和已分配的进程列表。
创建分配的列表:
通过找到具有足够大小以分配内存的第一个内存块,创建给定进程大小的已分配列表。如果找不到该内存块,则只需打印它即可。否则,请创建一个节点并将其添加到分配的链接列表中。
删除过程:
每个进程都有一个唯一的标签ID。从分配的链表中删除流程节点,以释放一些空间供其他流程使用。删除后,使用已删除节点的块ID来增加空闲列表中的内存块大小。
下面是该方法的实现:
C/C++
// C++ implementation of the First
// sit memory management algorithm
// using linked list
#include
using namespace std;
// Two global counters
int g = 0, k = 0;
// Structure for free list
struct free {
int tag;
int size;
struct free* next;
}* free_head = NULL, *prev_free = NULL;
// Structure for allocated list
struct alloc {
int block_id;
int tag;
int size;
struct alloc* next;
}* alloc_head = NULL, *prev_alloc = NULL;
// Function to create free
// list with given sizes
void create_free(int c)
{
struct free* p = (struct free*)
malloc(sizeof(struct free));
p->size = c;
p->tag = g;
p->next = NULL;
if (free_head == NULL)
free_head = p;
else
prev_free->next = p;
prev_free = p;
g++;
}
// Function to print free list which
// prints free blocks of given sizes
void print_free()
{
struct free* p = free_head;
cout << "Tag\tSize\n";
while (p != NULL) {
cout << p->tag << "\t"
<< p->size << "\n";
p = p->next;
}
}
// Function to print allocated list which
// prints allocated blocks and their block ids
void print_alloc()
{
struct alloc* p = alloc_head;
cout << "Tag\tBlock ID\tSize\n";
while (p != NULL) {
cout << p->tag << "\t "
<< p->block_id << "\t\t"
<< p->size << "\n";
p = p->next;
}
}
// Function to allocate memory to
// blocks as per First fit algorithm
void create_alloc(int c)
{
// create node for process of given size
struct alloc* q = (struct alloc*)
malloc(sizeof(struct alloc));
q->size = c;
q->tag = k;
q->next = NULL;
struct free* p = free_head;
// Iterate to find first memory
// block with appropriate size
while (p != NULL) {
if (q->size <= p->size)
break;
p = p->next;
}
// Node found to allocate
if (p != NULL) {
// Adding node to allocated list
q->block_id = p->tag;
p->size -= q->size;
if (alloc_head == NULL)
alloc_head = q;
else {
prev_alloc = alloc_head;
while (prev_alloc->next != NULL)
prev_alloc = prev_alloc->next;
prev_alloc->next = q;
}
k++;
}
else // Node found to allocate space from
cout << "Block of size " << c
<< " can't be allocated\n";
}
// Function to delete node from
// allocated list to free some space
void delete_alloc(int t)
{
// Standard delete function
// of a linked list node
struct alloc *p = alloc_head, *q = NULL;
// First, find the node according
// to given tag id
while (p != NULL) {
if (p->tag == t)
break;
q = p;
p = p->next;
}
if (p == NULL)
cout << "Tag ID doesn't exist\n";
else if (p == alloc_head)
alloc_head = alloc_head->next;
else
q->next = p->next;
struct free* temp = free_head;
while (temp != NULL) {
if (temp->tag == p->block_id) {
temp->size += p->size;
break;
}
temp = temp->next;
}
}
// Driver Code
int main()
{
int blockSize[] = { 100, 500, 200 };
int processSize[] = { 417, 112, 426, 95 };
int m = sizeof(blockSize)
/ sizeof(blockSize[0]);
int n = sizeof(processSize)
/ sizeof(processSize[0]);
for (int i = 0; i < m; i++)
create_free(blockSize[i]);
for (int i = 0; i < n; i++)
create_alloc(processSize[i]);
print_alloc();
// Block of tag id 0 deleted
// to free space for block of size 426
delete_alloc(0);
create_alloc(426);
cout << "After deleting block"
<< " with tag id 0.\n";
print_alloc();
}
输出:
Block of size 426 can't be allocated
Tag Block ID Size
0 1 417
1 2 112
2 0 95
After deleting block with tag id 0.
Tag Block ID Size
1 2 112
2 0 95
3 1 426
如果您希望与行业专家一起参加现场课程,请参阅《 Geeks现场课程》和《 Geeks现场课程美国》。