📜  使用基于 GNU 树的容器的间隔树

📅  最后修改于: 2021-09-03 04:13:40             🧑  作者: Mango

考虑一种情况,我们有一组间隔,我们需要以下操作来有效地实现:

  1. 添加间隔
  2. 删除间隔
  3. 给定区间 x,查找 x 是否与任何现有区间重叠。

区间树可以实现为增强的二叉搜索树(最好是自平衡的),从而使我们能够以 O(logN) 的时间复杂度执行所需的操作。

树的每个节点将存储以下信息:

  1. 区间i :表示为一对[low, high]。
  2. 右端点的元数据最大值:存储在以该节点为根的子树中的所有区间的右端点的最大值。存储这些元数据就是我们扩充树的方式。

区间树中使用的示例区间树 |设置 1:

在区间树 |第 1 组,我们看到了如何使用简单的 BST(非自平衡)实现区间树。在本文中,我们将使用内置的GNU 树型容器来实现区间树。这样做的好处是:

  • 我们不必编写自己的树数据结构。
  • 我们获得了诸如插入删除等开箱即用的默认操作。
  • 我们开始使用内置的红黑树实现,这意味着我们的树将是自平衡的

我们将使用基于 GNU 策略的树数据结构实现。

g++ 中基于策略的数据结构一文介绍了基于 GNU 策略的数据结构以及所需的头文件。

我们将定义我们自己的Node_update策略,以便我们可以维护子树中间隔最大右端点作为树节点中的元数据。

定义自定义 Node_policy 的语法是:

CPP
template <
    typename Const_Node_Iterator,
    typename Node_Iterator,
    typename Cmp_Fn_,
    typename Allocator_>
;
struct custom_node_update_policy {
    typedef type_of_our_metadata
        metadata_type;
  
    void operator()(
        node_iterator it,
        const_node_iterator end_it)
    {
        // ...
    }
  
    // ...other methods that we need
}


C++
// CPP program for above approach
#include 
#include 
  
using namespace std;
using namespace __gnu_pbds;
  
typedef pair Interval;
  
// An invalid interval, used as
// return value to denote that no
// matching interval was found
const Interval NO_INTERVAL_FOUND = { 1, 0 };
  
// interval update policy struct
template 
struct interval_node_update_policy {
  
    // Our metadata is maximum of
    // right-endpoints of intervals in the
    // sub-tree, which is of type int
    typedef int metadata_type;
  
    // An utility function to check
    // if given two intervals overlap
    bool doOverlap(Interval i1,
                   Node_CItr i2)
    {
        return (i1.first <= (*i2)->second
                && (*i2)->first <= i1.second);
    }
  
    // Search for any interval that
    // overlaps with Interval i
    Interval overlapSearch(Interval i)
    {
        for (Node_CItr it = node_begin();
             it != node_end();) {
            if (doOverlap(i, it)) {
                return { (*it)->first,
                         (*it)->second };
            }
  
            if (it.get_l_child() != node_end()
                && it.get_l_child()
                           .get_metadata()
                       >= i.first) {
                it = it.get_l_child();
            }
            else {
                it = it.get_r_child();
            }
        }
        return NO_INTERVAL_FOUND;
    }
  
    // To restore the node-invariance
    // of the node pointed to by
    // (it). We need to derive the
    // metadata for node (it) from
    // its left-child and right-child.
    void operator()(Node_Itr it,
                    Node_CItr end_it)
    {
        int max_high = (*it)->second;
  
        if (it.get_l_child() != end_it) {
            max_high = max(
                max_high,
                it.get_l_child()
                    .get_metadata());
        }
  
        if (it.get_r_child() != end_it) {
            max_high = max(
                max_high,
                it.get_r_child()
                    .get_metadata());
        }
  
        // The max of right-endpoint
        // of this node and the max
        // right-endpoints of children.
        const_cast(
            it.get_metadata())
            = max_high;
    }
  
    virtual Node_CItr node_begin() const = 0;
    virtual Node_CItr node_end() const = 0;
    virtual ~interval_node_update_policy() {}
};
  
// IntervalTree data structure
// rb_tree_tag: uses red-black search tree
// interval_node_update_policy:
// our custom Node_update policy
typedef tree,
             rb_tree_tag,
             interval_node_update_policy>
    IntervalTree;
  
// Driver Code
int main()
{
    IntervalTree IT;
    Interval intvs[] = { { 15, 20 },
                         { 10, 30 },
                         { 17, 19 },
                         { 5, 20 },
                         { 12, 15 },
                         { 30, 40 } };
  
    for (Interval intv : intvs) {
        IT.insert(intv);
    }
  
    Interval toSearch = { 25, 29 };
    cout << "\nSearching for interval ["
         << toSearch.first << ", "
         << toSearch.second << "]";
    Interval res = IT.overlapSearch(toSearch);
    if (res == NO_INTERVAL_FOUND)
        cout << "\nNo Overlapping Interval\n";
    else
        cout << "\nOverlaps with ["
             << res.first << ", "
             << res.second << "]\n";
  
    Interval toErase = { 10, 30 };
    IT.erase(toErase);
    cout << "\nDeleting interval ["
         << toErase.first << ", "
         << toErase.second
         << "]\n";
  
    cout << "\nSearching for interval ["
         << toSearch.first << ", "
         << toSearch.second << "]";
    res = IT.overlapSearch(toSearch);
    if (res == NO_INTERVAL_FOUND)
        cout << "\nNo Overlapping Interval\n";
    else
        cout << "\nOverlaps with ["
             << res.first << ", "
             << res.second << "]\n";
    return 0;
}


  • type_of_our_metadata:在我们的例子中是int因为我们想要存储元数据“子树中间隔的右端点的最大值”。
  • void 运算符()(node_iterator it, const_node_iterator end_it):在内部调用以恢复节点不变性的方法,即在不变性失效后保持正确的元数据。  
  • it: node_iterator 到我们需要恢复其不变性的节点。
  • end_it : const_node_iterator 到叶后节点。

有关更多详细信息,请参阅基于 GNU 树的容器。

我们还将定义一个方法overlapSearch ,它搜索树中与给定间隔i重叠的任何间隔。

// pseudocode for overlapSearch

Interval overlapSearch(Interval i) {
    // start from root
    it = root_node

    while (it not null) {
        if (doOVerlap(i, it->interval)) {
              // overlap found
               return it->inteval
        }

        if (left_child exists
                     AND
             left_child->max_right_endpoint
                   >= it->left_endpoint) {
            // go to left child
            it = it->left_child
        }

        else {
            // go to right child
            it = it->right_child
        }
    }

    // no overlapping interval found
    return NO_INTERVAL_FOUND
}

下面是区间树的实现:

C++

// CPP program for above approach
#include 
#include 
  
using namespace std;
using namespace __gnu_pbds;
  
typedef pair Interval;
  
// An invalid interval, used as
// return value to denote that no
// matching interval was found
const Interval NO_INTERVAL_FOUND = { 1, 0 };
  
// interval update policy struct
template 
struct interval_node_update_policy {
  
    // Our metadata is maximum of
    // right-endpoints of intervals in the
    // sub-tree, which is of type int
    typedef int metadata_type;
  
    // An utility function to check
    // if given two intervals overlap
    bool doOverlap(Interval i1,
                   Node_CItr i2)
    {
        return (i1.first <= (*i2)->second
                && (*i2)->first <= i1.second);
    }
  
    // Search for any interval that
    // overlaps with Interval i
    Interval overlapSearch(Interval i)
    {
        for (Node_CItr it = node_begin();
             it != node_end();) {
            if (doOverlap(i, it)) {
                return { (*it)->first,
                         (*it)->second };
            }
  
            if (it.get_l_child() != node_end()
                && it.get_l_child()
                           .get_metadata()
                       >= i.first) {
                it = it.get_l_child();
            }
            else {
                it = it.get_r_child();
            }
        }
        return NO_INTERVAL_FOUND;
    }
  
    // To restore the node-invariance
    // of the node pointed to by
    // (it). We need to derive the
    // metadata for node (it) from
    // its left-child and right-child.
    void operator()(Node_Itr it,
                    Node_CItr end_it)
    {
        int max_high = (*it)->second;
  
        if (it.get_l_child() != end_it) {
            max_high = max(
                max_high,
                it.get_l_child()
                    .get_metadata());
        }
  
        if (it.get_r_child() != end_it) {
            max_high = max(
                max_high,
                it.get_r_child()
                    .get_metadata());
        }
  
        // The max of right-endpoint
        // of this node and the max
        // right-endpoints of children.
        const_cast(
            it.get_metadata())
            = max_high;
    }
  
    virtual Node_CItr node_begin() const = 0;
    virtual Node_CItr node_end() const = 0;
    virtual ~interval_node_update_policy() {}
};
  
// IntervalTree data structure
// rb_tree_tag: uses red-black search tree
// interval_node_update_policy:
// our custom Node_update policy
typedef tree,
             rb_tree_tag,
             interval_node_update_policy>
    IntervalTree;
  
// Driver Code
int main()
{
    IntervalTree IT;
    Interval intvs[] = { { 15, 20 },
                         { 10, 30 },
                         { 17, 19 },
                         { 5, 20 },
                         { 12, 15 },
                         { 30, 40 } };
  
    for (Interval intv : intvs) {
        IT.insert(intv);
    }
  
    Interval toSearch = { 25, 29 };
    cout << "\nSearching for interval ["
         << toSearch.first << ", "
         << toSearch.second << "]";
    Interval res = IT.overlapSearch(toSearch);
    if (res == NO_INTERVAL_FOUND)
        cout << "\nNo Overlapping Interval\n";
    else
        cout << "\nOverlaps with ["
             << res.first << ", "
             << res.second << "]\n";
  
    Interval toErase = { 10, 30 };
    IT.erase(toErase);
    cout << "\nDeleting interval ["
         << toErase.first << ", "
         << toErase.second
         << "]\n";
  
    cout << "\nSearching for interval ["
         << toSearch.first << ", "
         << toSearch.second << "]";
    res = IT.overlapSearch(toSearch);
    if (res == NO_INTERVAL_FOUND)
        cout << "\nNo Overlapping Interval\n";
    else
        cout << "\nOverlaps with ["
             << res.first << ", "
             << res.second << "]\n";
    return 0;
}
输出:
Searching for interval [25, 29]
Overlaps with [10, 30]

Deleting interval [10, 30]

Searching for interval [25, 29]
No Overlapping Interval

时间复杂度

所有操作的大小都是对数的,即O(logN) ,其中 N 是存储在树中的间隔数。

我们能够实现对数最坏情况复杂度,因为内部使用了自平衡的红黑树。

如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live