📜  Numpy MaskedArray.var()函数| Python

📅  最后修改于: 2022-05-13 01:55:32.642000             🧑  作者: Mango

Numpy MaskedArray.var()函数| Python

numpy.MaskedArray.var()函数用于计算沿指定轴的方差。它返回掩码数组元素的方差,即分布分布的度量。默认情况下为展平数组计算方差,否则在指定轴上计算。

代码#1:

Python3
# Python program explaining
# numpy.MaskedArray.var() method
   
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
   
# creating input array 
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("Input array : ", in_arr)
   
# Now we are creating a masked array.
# by making  entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]])
print ("Masked array : ", mask_arr)
   
# applying MaskedArray.var   
# methods to masked array
out_arr = ma.var(mask_arr)
print ("variance of masked array along default axis : ", out_arr)


Python3
# Python program explaining
# numpy.MaskedArray.var() method
    
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
    
# creating input array
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]])
print ("Input array : ", in_arr)
     
# Now we are creating a masked array.
# by making one entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]])
print ("Masked array : ", mask_arr)
    
# applying MaskedArray.var methods
# to masked array
out_arr1 = ma.var(mask_arr, axis = 0)
print ("variance of masked array along 0 axis : ", out_arr1)
 
out_arr2 = ma.var(mask_arr, axis = 1)
print ("variance of masked array along 1 axis : ", out_arr2)


输出:
Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
Masked array :  [[-- 2]
 [-- -1]
 [5 -3]]
variance of masked array along default axis :  9.1875

代码#2:

Python3

# Python program explaining
# numpy.MaskedArray.var() method
    
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
    
# creating input array
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]])
print ("Input array : ", in_arr)
     
# Now we are creating a masked array.
# by making one entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]])
print ("Masked array : ", mask_arr)
    
# applying MaskedArray.var methods
# to masked array
out_arr1 = ma.var(mask_arr, axis = 0)
print ("variance of masked array along 0 axis : ", out_arr1)
 
out_arr2 = ma.var(mask_arr, axis = 1)
print ("variance of masked array along 1 axis : ", out_arr2)

输出:

Input array :  [[1 0 3]

 [4 1 6]]

Masked array :  [[1 0 3]

 [4 1 --]]

variance of masked array along 0 axis :  [2.25 0.25 0.  ]

variace of masked array along 1 axis :  [1.55555556 2.25      ]