Python中的 Matplotlib.pyplot.semilogx()
数据可视化是分析数据的重要组成部分,因为绘制图表有助于更好地洞察和理解问题。 Matplotlib.pyplot是最常用的库之一。它有助于创建有吸引力的数据,并且非常易于使用。
Matplotlib.pyplot.semilogx()函数
此函数用于以 x 轴转换为日志格式的方式可视化数据。当其中一个参数非常大并因此最初以紧凑的方式存储时,此函数特别有用。它支持plot()和matplotlib.axes.Axes.set_xscale()的所有关键字参数。附加参数是basex 、 subsx和nonposx。
Syntax: Matplotlib.pyplot.semilogx(x, y, )
Parameters: Some important parameters are:
- x: Values on X-axis.
- y: Values on Y-axis.
- color: (optional) Color of the line or the symbol.
- linewidth: (optional) Width of the line.
- label: (optional) Specifies the label of the graph
- basex: (optional) The base of the x logarithm. The scalar should be larger than 1.
- subsx: (optional) The location of the minor xticks; None defaults to autosubs, which depend on the number of decades in the plot.
- nonposx: (optional) Non-positive values in x can be masked as invalid, or clipped to a very small positive number.
- marker: (optional) Displays the points as the mentioned symbol.
- markersize: (optional) Changes the size of all the markers.
Return: A log-scaled plot on the x-axis.
示例 1:简单的情节。
Python3
#import required library
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [1, 2, 3,
4, 5, 6]
y = [100, 200, 300,
400, 500, 600]
# plotting the given graph
plt.semilogx(x, y, marker = ".",
markersize = 15,
color = "green")
# plot with grid
plt.grid(True)
# show the plot
plt.show()
Python3
# importing required libraries
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [-1, -2, 0]
y = [5, -2, 0]
# plotting the given graph
plt.semilogx(x,y)
# show the plot
plt.show()
Python3
#import required library
import matplotlib.pyplot as plt
# defining the values at X and Y axis
x = [-10, 30, 0, 20,
-50, 25, 29, -3
, 23, 25, 29, 31]
y = [-3, 30, -10, 0,
-40, 3, 8, 0,
-24, 40, 43, 25]
# plotting the graph
plt.semilogx(x,y,'g^', color = "red")
# plot with grid
plt.grid(True)
# set y axis label
plt.ylabel('---y---')
# set x axis label
plt.xlabel('---x---')
# show the plot
plt.show()
Python3
#import required library
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [1, 2, -3,
-4, 5, 6]
y = [100, 200, 300,
400, 500, 600]
# plotting the graph
plt.semilogx(x, y, marker = ".",
markersize = 15)
# plot with grid
plt.grid(True)
# show the plot
plt.show()
Python3
#import required library
import matplotlib.pyplot as plt
# specifying the subplot
fig, axes = plt.subplots(nrows = 4,
ncols = 4,
figsize = (10,10))
# Or equivalently,
# "plt.tight_layout()"
fig.tight_layout()
# subplot 1
plt.subplot(2, 2, 1)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
color = "blue",
linewidth = 4)
# set the title
plt.title("USING LINE")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 2
plt.subplot(2, 2, 2)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
'g^',
markersize = 20,
color = "black")
# set the title
plt.title("USING SYMBOL")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 3
plt.subplot(2, 2, 3)
x2 = [0.1, 10, -30]
y2 = [40, -10 ,45]
# plotting the given graph
plt.semilogx(x2, y2,
nonposx = "clip",
color = "red",
linewidth = 4)
# set the title
plt.title("CLIPPED")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 4
plt.subplot(2, 2, 4)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
nonposx = "mask",
color = "green",
linewidth = 4)
# set the title
plt.title("MASKED")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# show the plot
plt.show()
Python3
# import required library
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows = 1,
ncols = 2,
figsize = (15,9))
# Or equivalently, "plt.tight_layout()"
fig.tight_layout()
# subplot 1
x1 = [-1, 2, 0,
-3, 5, 9,
10, -3, -8,
15, 12, 0.1,0.9]
y1 = [5, -2, 0,
10, 20, 30,
25, 28, 16,
25, 28, 3, 5]
plt.subplot(1,2,1)
# plotting the graph
plt.semilogx(x1, y1,
marker = ".",
markersize = 20,
nonposx = "clip",
color = "green" )
# set the y-axis label
plt.ylabel('---y---')
# set the x-axis label
plt.xlabel('---x---')
# set the title
plt.title('CLIP')
# plot with grid
plt.grid(True)
# subplot 2
x2 = [-1, 2, 0,
-3, 5, 9,
10, -3, -8,
15, 12, 0.1, 0.9]
y2 = [5, -2, 0,
10, 20, 30,
25, 28, 16,
25, 28, 3, 5]
plt.subplot(1,2,2)
plt.semilogx(x2, y2,
nonposx = "mask",
color ="green",
linewidth = 4,
marker = ".",
markersize = 20)
# set the title
plt.title('MASK')
# set the y-axis label
plt.ylabel('---y---')
# set the x-axis label
plt.xlabel('---x---')
# plot with grid
plt.grid(True)
# show the plot
plt.show()
Python3
# importing the required libraries
import numpy as np
import matplotlib.pyplot as plt
# function that will
# output the values
def function(t):
return np.exp(-t)*np.sin(2*np.pi.t)/2 + np.tan(t)
# define the x-axis values
t1 = np.arange(-0.01, 1.0, 0.08)
t2 = np.arange(0.0, 5.0, 0.02)
# subplot 1
plt.figure(figsize = (10,10))
plt.subplot(211)
# plot the graph
plt.semilogx(t1, f(t1),
'bo', t2, f(t2),
'k', color = "blue",
basex = 3)
# set the title
plt.title("BASE: 3")
# subplot 2
plt.subplot(212)
# plot the graph
plt.semilogx(t2, np.cos(2*np.pi*t2),
'r--', color = "brown",
linewidth = 2, basex = 4)
# set the title
plt.title("BASE: 4")
# show the plot
plt.show()
Python3
# import required library
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows = 2,
ncols = 2,
figsize = (10,7))
# Or equivalently, "plt.tight_layout()"
fig.tight_layout()
# subplot 1
plt.subplot(2, 2, 1)
x = [1, 11]
y = [4, 6]
# plot the graph
plt.semilogx(x, y, marker = ".",
markersize = 20,
color = "green")
# set the title
plt.title("Without subsx - line ")
# plot with grid
plt.grid(True)
# subplot 2
plt.subplot(2, 2, 2)
x = [1, 11]
y = [4, 6]
# plot the graph
plt.semilogx(x, y, subsx = [2, 3, 9, 10],
marker = ".", markersize = 20,
color = "green")
# set the title
plt.title("With subsx - line ")
plt.grid(True)
# subplot 3
plt.subplot(2, 2, 3)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', marker = ".",
markersize = 20,
color = "blue")
plt.title("Without subsx - symbol ")
plt.grid(True)
# subplot 4
plt.subplot(2, 2, 4)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', subsx=[2, 3, 9, 10],
marker = ".", markersize = 20,
color = "blue")
plt.title("With subsx - symbol ")
plt.grid(True)
plt.show()
输出:
示例 2:在 X 和 Y 轴上使用负值和零值。
由于 X 轴涉及对数函数,因此很明显,负值或正值将被裁剪或屏蔽,如 nonposx 参数所指定。默认情况下,负值或零值被剪裁。
Python3
# importing required libraries
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [-1, -2, 0]
y = [5, -2, 0]
# plotting the given graph
plt.semilogx(x,y)
# show the plot
plt.show()
输出:
示例 3:如果使用符号,则简单地删除负值或零值,仅绘制正值。
Python3
#import required library
import matplotlib.pyplot as plt
# defining the values at X and Y axis
x = [-10, 30, 0, 20,
-50, 25, 29, -3
, 23, 25, 29, 31]
y = [-3, 30, -10, 0,
-40, 3, 8, 0,
-24, 40, 43, 25]
# plotting the graph
plt.semilogx(x,y,'g^', color = "red")
# plot with grid
plt.grid(True)
# set y axis label
plt.ylabel('---y---')
# set x axis label
plt.xlabel('---x---')
# show the plot
plt.show()
输出:
示例 4:如果使用线条,则将剪裁值。
Python3
#import required library
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [1, 2, -3,
-4, 5, 6]
y = [100, 200, 300,
400, 500, 600]
# plotting the graph
plt.semilogx(x, y, marker = ".",
markersize = 15)
# plot with grid
plt.grid(True)
# show the plot
plt.show()
输出:
示例 5:以下子图将使差异更加清晰。
Python3
#import required library
import matplotlib.pyplot as plt
# specifying the subplot
fig, axes = plt.subplots(nrows = 4,
ncols = 4,
figsize = (10,10))
# Or equivalently,
# "plt.tight_layout()"
fig.tight_layout()
# subplot 1
plt.subplot(2, 2, 1)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
color = "blue",
linewidth = 4)
# set the title
plt.title("USING LINE")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 2
plt.subplot(2, 2, 2)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
'g^',
markersize = 20,
color = "black")
# set the title
plt.title("USING SYMBOL")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 3
plt.subplot(2, 2, 3)
x2 = [0.1, 10, -30]
y2 = [40, -10 ,45]
# plotting the given graph
plt.semilogx(x2, y2,
nonposx = "clip",
color = "red",
linewidth = 4)
# set the title
plt.title("CLIPPED")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 4
plt.subplot(2, 2, 4)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
nonposx = "mask",
color = "green",
linewidth = 4)
# set the title
plt.title("MASKED")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# show the plot
plt.show()
输出:
示例 6:使用 nonposx 参数。
屏蔽会删除无效值,而剪辑会将它们设置为非常低的可能值。
在下面的图中,裁剪和遮罩之间的区别将更加清晰。
Python3
# import required library
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows = 1,
ncols = 2,
figsize = (15,9))
# Or equivalently, "plt.tight_layout()"
fig.tight_layout()
# subplot 1
x1 = [-1, 2, 0,
-3, 5, 9,
10, -3, -8,
15, 12, 0.1,0.9]
y1 = [5, -2, 0,
10, 20, 30,
25, 28, 16,
25, 28, 3, 5]
plt.subplot(1,2,1)
# plotting the graph
plt.semilogx(x1, y1,
marker = ".",
markersize = 20,
nonposx = "clip",
color = "green" )
# set the y-axis label
plt.ylabel('---y---')
# set the x-axis label
plt.xlabel('---x---')
# set the title
plt.title('CLIP')
# plot with grid
plt.grid(True)
# subplot 2
x2 = [-1, 2, 0,
-3, 5, 9,
10, -3, -8,
15, 12, 0.1, 0.9]
y2 = [5, -2, 0,
10, 20, 30,
25, 28, 16,
25, 28, 3, 5]
plt.subplot(1,2,2)
plt.semilogx(x2, y2,
nonposx = "mask",
color ="green",
linewidth = 4,
marker = ".",
markersize = 20)
# set the title
plt.title('MASK')
# set the y-axis label
plt.ylabel('---y---')
# set the x-axis label
plt.xlabel('---x---')
# plot with grid
plt.grid(True)
# show the plot
plt.show()
输出:
示例 7:更改基础。
底数可以根据方便设置,它应该大于1以满足对数性质。
Python3
# importing the required libraries
import numpy as np
import matplotlib.pyplot as plt
# function that will
# output the values
def function(t):
return np.exp(-t)*np.sin(2*np.pi.t)/2 + np.tan(t)
# define the x-axis values
t1 = np.arange(-0.01, 1.0, 0.08)
t2 = np.arange(0.0, 5.0, 0.02)
# subplot 1
plt.figure(figsize = (10,10))
plt.subplot(211)
# plot the graph
plt.semilogx(t1, f(t1),
'bo', t2, f(t2),
'k', color = "blue",
basex = 3)
# set the title
plt.title("BASE: 3")
# subplot 2
plt.subplot(212)
# plot the graph
plt.semilogx(t2, np.cos(2*np.pi*t2),
'r--', color = "brown",
linewidth = 2, basex = 4)
# set the title
plt.title("BASE: 4")
# show the plot
plt.show()
输出:
示例 8:使用 subsx 参数。
指定 X 轴上的次要 xticks。默认情况下,它取决于图中的几十年数。
Python3
# import required library
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows = 2,
ncols = 2,
figsize = (10,7))
# Or equivalently, "plt.tight_layout()"
fig.tight_layout()
# subplot 1
plt.subplot(2, 2, 1)
x = [1, 11]
y = [4, 6]
# plot the graph
plt.semilogx(x, y, marker = ".",
markersize = 20,
color = "green")
# set the title
plt.title("Without subsx - line ")
# plot with grid
plt.grid(True)
# subplot 2
plt.subplot(2, 2, 2)
x = [1, 11]
y = [4, 6]
# plot the graph
plt.semilogx(x, y, subsx = [2, 3, 9, 10],
marker = ".", markersize = 20,
color = "green")
# set the title
plt.title("With subsx - line ")
plt.grid(True)
# subplot 3
plt.subplot(2, 2, 3)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', marker = ".",
markersize = 20,
color = "blue")
plt.title("Without subsx - symbol ")
plt.grid(True)
# subplot 4
plt.subplot(2, 2, 4)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', subsx=[2, 3, 9, 10],
marker = ".", markersize = 20,
color = "blue")
plt.title("With subsx - symbol ")
plt.grid(True)
plt.show()
输出:
概括:
- X 轴以对数方式绘制,并且可以通过定义basex属性来指定底数。基数应大于 1
- 如果绘制线条,则默认情况下会裁剪负值或零值。
- mask属性删除负值/零值,而clip属性将它们设置为非常低的正值。
- 如果使用符号,则默认情况下会屏蔽负数/零。
- semilogx遵循plot()和matplotlib.axes.Axes.set_xscale() 的所有参数。
- subsx参数定义次要 xticks。