📜  scikit learn中的True Positive, True Negative, False Positive, False Negative - Python代码示例

📅  最后修改于: 2022-03-11 14:45:07.835000             🧑  作者: Mango

代码示例1
#According to scikit-learn documentation,

#http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn.metrics.confusion_matrix

#By definition a confusion matrix C is such that C[i, j] is equal to the number of observations known to be in group i but predicted to be in group j.

#Thus in binary classification, the count of true negatives is C[0,0], false negatives is C[1,0], true positives is C[1,1] and false positives is C[0,1].

CM = confusion_matrix(y_true, y_pred)

TN = CM[0][0]
FN = CM[1][0]
TP = CM[1][1]
FP = CM[0][1]