Python – tensorflow.executing_eagerly()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
execution_eagerly ()用于检查当前线程中是否启用或禁用了急切执行。默认情况下,急切执行是启用的,因此在大多数情况下它将返回 true。这将在以下情况下返回 false:
- 如果它在tensorflow 中执行。函数和tf.init_scope或tf.config.experimental_run_functions_eagerly(True)之前未调用。
- 在 tensorflow.dataset 的转换函数中执行。
- tensorflow.compat.v1.disable_eager_execution() 被调用。
Syntax: tensorflow.executing_eagerly()
Parameters: This doesn’t accept any parameters.
Returns: It returns true is eager execution is enabled otherwise it will return false.
示例 1:
Python3
# Importing the library
import tensorflow as tf
# Checking eager execution
res = tf.executing_eagerly()
# Printing the result
print('res: ', res)
Python3
# Importing the library
import tensorflow as tf
@tf.function
def gfg():
with tf.init_scope():
# Checking eager execution inside init_scope
res = tf.executing_eagerly()
print("res 1:", res)
# Checking eager execution outside init_scope
res = tf.executing_eagerly()
print("res 2:", res)
gfg()
输出:
res: True
示例 2:此示例检查 tensorflow 的急切执行。有和没有 init_scope 的函数。
Python3
# Importing the library
import tensorflow as tf
@tf.function
def gfg():
with tf.init_scope():
# Checking eager execution inside init_scope
res = tf.executing_eagerly()
print("res 1:", res)
# Checking eager execution outside init_scope
res = tf.executing_eagerly()
print("res 2:", res)
gfg()
输出:
res 1: True
res 2: False