📜  在 Pandas Dataframe 中迭代行的不同方法

📅  最后修改于: 2022-05-13 01:55:18.445000             🧑  作者: Mango

在 Pandas Dataframe 中迭代行的不同方法

Python是一种用于进行数据分析的出色语言,主要是因为以数据为中心的Python包的奇妙生态系统。 Pandas就是其中之一,它使导入和分析数据变得更加容易。

让我们看看在 Pandas Dataframe中迭代行的不同方法:

方法#1:使用 Dataframe 的index属性。

# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'],
                'Age': [21, 19, 20, 18],
                'Stream': ['Math', 'Commerce', 'Arts', 'Biology'],
                'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using index attribute :\n")
  
# iterate through each row and select 
# 'Name' and 'Stream' column respectively.
for ind in df.index:
     print(df['Name'][ind], df['Stream'][ind])
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using index attribute :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology


方法#2:使用数据帧的loc[]函数。

# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'],
                'Age': [21, 19, 20, 18],
                'Stream': ['Math', 'Commerce', 'Arts', 'Biology'],
                'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using loc function :\n")
  
# iterate through each row and select 
# 'Name' and 'Age' column respectively.
for i in range(len(df)) :
  print(df.loc[i, "Name"], df.loc[i, "Age"])
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using loc function :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18


方法 #3:使用 DataFrame 的iloc[]函数。

# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'],
                'Age': [21, 19, 20, 18],
                'Stream': ['Math', 'Commerce', 'Arts', 'Biology'],
                'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using iloc function :\n")
  
# iterate through each row and select 
# 0th and 2nd index column respectively.
for i in range(len(df)) :
  print(df.iloc[i, 0], df.iloc[i, 2])
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iloc function :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology


方法#4:使用数据框的iterrows()方法。

# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'],
                'Age': [21, 19, 20, 18],
                'Stream': ['Math', 'Commerce', 'Arts', 'Biology'],
                'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using iterrows() method :\n")
  
# iterate through each row and select 
# 'Name' and 'Age' column respectively.
for index, row in df.iterrows():
    print (row["Name"], row["Age"])
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iterrows() method :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18


方法#5:使用数据帧的itertuples()方法。

# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'],
                'Age': [21, 19, 20, 18],
                'Stream': ['Math', 'Commerce', 'Arts', 'Biology'],
                'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using itertuples() method :\n")
  
# iterate through each row and select 
# 'Name' and 'Percentage' column respectively.
for row in df.itertuples(index = True, name ='Pandas'):
    print (getattr(row, "Name"), getattr(row, "Percentage"))
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using itertuples() method :

Ankit 88
Amit 92
Aishwarya 95
Priyanka 70


方法 #6:使用 Dataframe 的apply()方法。

# import pandas package as pd
import pandas as pd
  
# Define a dictionary containing students data
data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'],
                'Age': [21, 19, 20, 18],
                'Stream': ['Math', 'Commerce', 'Arts', 'Biology'],
                'Percentage': [88, 92, 95, 70]}
  
# Convert the dictionary into DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", df)
  
print("\nIterating over rows using apply function :\n")
  
# iterate through each row and concatenate
# 'Name' and 'Percentage' column respectively.
print(df.apply(lambda row: row["Name"] + " " + str(row["Percentage"]), axis = 1))
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using apply function :

0        Ankit 88
1         Amit 92
2    Aishwarya 95
3     Priyanka 70
dtype: object