具有最大弯道数的路径长度
给定一棵二叉树,找到具有最大弯曲数的路径长度。
注意:这里,bend 表示在树中遍历时从左到右切换,反之亦然。
例如,考虑以下路径(L 表示向左移动,R 表示向右移动):
LLRRRR – 1 弯
RLLLRR – 2 个弯头
LRLRLR – 5 弯
先决条件:在二叉树中找到最大路径长度
例子:
Input :
4
/ \
2 6
/ \ / \
1 3 5 7
/
9
/ \
12 10
\
11
/ \
45 13
\
14
Output : 6
In the above example, the path 4-> 6-> 7-> 9-> 10-> 11-> 45
is having the maximum number of bends, i.e., 3.
The length of this path is 6.
方法 :
这个想法是遍历树根的左子树和右子树。遍历时,跟踪运动方向(左或右)。无论何时,运动方向从左到右改变,反之亦然,当前路径中的弯曲数增加 1。
在到达叶节点时,将当前路径中的弯曲数与到目前为止在根到叶路径中看到的最大弯曲数(即 maxBends)进行比较。如果当前路径中的弯道数大于 maxBends,则将 maxBends 更新为等于当前路径中的弯道数,并将最大路径长度(即 len)也更新为当前路径的长度。
执行 :
C++
// C++ program to find path length
// having maximum number of bends
#include
using namespace std;
// structure node
struct Node {
int key;
struct Node* left;
struct Node* right;
};
// Utility function to create a new node
struct Node* newNode(int key)
{
struct Node* node = new Node();
node->left = NULL;
node->right = NULL;
node->key = key;
return node;
}
/* Recursive function to calculate the path
length having maximum number of bends.
The following are parameters for this function.
node --> pointer to the current node
dir --> determines whether the current node
is left or right child of it's parent node
bends --> number of bends so far in the
current path.
maxBends --> maximum number of bends in a
path from root to leaf
soFar --> length of the current path so
far traversed
len --> length of the path having maximum
number of bends
*/
void findMaxBendsUtil(struct Node* node,
char dir, int bends,
int* maxBends, int soFar,
int* len)
{
// Base Case
if (node == NULL)
return;
// Leaf node
if (node->left == NULL && node->right == NULL) {
if (bends > *maxBends) {
*maxBends = bends;
*len = soFar;
}
}
// Recurring for both left and right child
else {
if (dir == 'l') {
findMaxBendsUtil(node->left, dir,
bends, maxBends,
soFar + 1, len);
findMaxBendsUtil(node->right, 'r',
bends + 1, maxBends,
soFar + 1, len);
}
else {
findMaxBendsUtil(node->right, dir,
bends, maxBends,
soFar + 1, len);
findMaxBendsUtil(node->left, 'l',
bends + 1, maxBends,
soFar + 1, len);
}
}
}
// Helper function to call findMaxBendsUtil()
int findMaxBends(struct Node* node)
{
if (node == NULL)
return 0;
int len = 0, bends = 0, maxBends = -1;
// Call for left subtree of the root
if (node->left)
findMaxBendsUtil(node->left, 'l',
bends, &maxBends, 1, &len);
// Call for right subtree of the root
if (node->right)
findMaxBendsUtil(node->right, 'r', bends,
&maxBends, 1, &len);
// Include the root node as well in the path length
len++;
return len;
}
// Driver code
int main()
{
/* Constructed binary tree is
10
/ \
8 2
/ \ /
3 5 2
\
1
/
9
*/
struct Node* root = newNode(10);
root->left = newNode(8);
root->right = newNode(2);
root->left->left = newNode(3);
root->left->right = newNode(5);
root->right->left = newNode(2);
root->right->left->right = newNode(1);
root->right->left->right->left = newNode(9);
cout << findMaxBends(root) - 1;
return 0;
}
Java
// Java program to find path length
// having maximum number of bends
import java.util.*;
class GFG
{
// structure node
static class Node
{
int key;
Node left;
Node right;
};
// Utility function to create a new node
static Node newNode(int key)
{
Node node = new Node();
node.left = null;
node.right = null;
node.key = key;
return node;
}
/* Recursive function to calculate the path
length having maximum number of bends.
The following are parameters for this function.
node -. pointer to the current node
dir -. determines whether the current node
is left or right child of it's parent node
bends -. number of bends so far in the
current path.
maxBends -. maximum number of bends in a
path from root to leaf
soFar -. length of the current path so
far traversed
len -. length of the path having maximum
number of bends
*/
static int maxBends;
static int len;
private static final char LEFT = 'l';
private static final char RIGHT = 'r';
static void findMaxBendsUtil(Node node,
char dir, int bends,
int lenSoFar)
{
// Base Case
if (node == null)
return;
// Leaf node
if (node.left == null && node.right == null)
{
if (bends > maxBends)
{
maxBends = bends;
len = lenSoFar;
}
}
// Recurring for both left and right child
else
{
if (dir == LEFT)
{
findMaxBendsUtil(node.left, dir,
bends,
lenSoFar + 1);
findMaxBendsUtil(node.right, RIGHT,
bends + 1,
lenSoFar + 1);
}
else
{
findMaxBendsUtil(node.right, dir,
bends,
lenSoFar + 1);
findMaxBendsUtil(node.left, LEFT,
bends + 1,
lenSoFar + 1);
}
}
}
// Helper function to call findMaxBendsUtil()
static int findMaxBends(Node node)
{
if (node == null)
return 0;
len = 0;
maxBends = -1;
int bends = 0;
// Call for left subtree of the root
if (node.left != null)
findMaxBendsUtil(node.left, LEFT,
bends, 1);
// Call for right subtree of the root
if (node.right != null)
findMaxBendsUtil(node.right, RIGHT, bends,
1);
// Include the root node as well in the path length
len++;
return len;
}
// Driver code
public static void main(String[] args)
{
/* Constructed binary tree is
10
/ \
8 2
/ \ /
3 5 2
\
1
/
9
*/
Node root = newNode(10);
root.left = newNode(8);
root.right = newNode(2);
root.left.left = newNode(3);
root.left.right = newNode(5);
root.right.left = newNode(2);
root.right.left.right = newNode(1);
root.right.left.right.left = newNode(9);
System.out.print(findMaxBends(root) - 1);
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 program to find path Length
# having maximum number of bends
# Utility function to create a new node
class newNode:
def __init__(self, key):
self.left = None
self.right = None
self.key = key
# Recursive function to calculate the path
# Length having maximum number of bends.
# The following are parameters for this function.
# node -. pointer to the current node
# Dir -. determines whether the current node
# is left or right child of it's parent node
# bends -. number of bends so far in the
# current path.
# maxBends -. maximum number of bends in a
# path from root to leaf
# soFar -. Length of the current path so
# far traversed
# Len -. Length of the path having maximum
# number of bends
def findMaxBendsUtil(node, Dir, bends,
maxBends, soFar, Len):
# Base Case
if (node == None):
return
# Leaf node
if (node.left == None and
node.right == None):
if (bends > maxBends[0]):
maxBends[0] = bends
Len[0] = soFar
# Having both left and right child
else:
if (Dir == 'l'):
findMaxBendsUtil(node.left, Dir, bends,
maxBends, soFar + 1, Len)
findMaxBendsUtil(node.right, 'r', bends + 1,
maxBends, soFar + 1, Len)
else:
findMaxBendsUtil(node.right, Dir, bends,
maxBends, soFar + 1, Len)
findMaxBendsUtil(node.left, 'l', bends + 1,
maxBends, soFar + 1, Len)
# Helper function to call findMaxBendsUtil()
def findMaxBends(node):
if (node == None):
return 0
Len = [0]
bends = 0
maxBends = [-1]
# Call for left subtree of the root
if (node.left):
findMaxBendsUtil(node.left, 'l', bends,
maxBends, 1, Len)
# Call for right subtree of the root
if (node.right):
findMaxBendsUtil(node.right, 'r', bends,
maxBends, 1, Len)
# Include the root node as well
# in the path Length
Len[0] += 1
return Len[0]
# Driver code
if __name__ == '__main__':
# Constructed binary tree is
# 10
# / \
# 8 2
# / \ /
# 3 5 2
# \
# 1
# /
# 9
root = newNode(10)
root.left = newNode(8)
root.right = newNode(2)
root.left.left = newNode(3)
root.left.right = newNode(5)
root.right.left = newNode(2)
root.right.left.right = newNode(1)
root.right.left.right.left = newNode(9)
print(findMaxBends(root) - 1)
# This code is contributed by PranchalK
C#
// C# program to find path length
// having maximum number of bends
using System;
public class GFG
{
// structure node
public
class Node
{
public
int key;
public
Node left;
public
Node right;
};
// Utility function to create a new node
static Node newNode(int key)
{
Node node = new Node();
node.left = null;
node.right = null;
node.key = key;
return node;
}
/* Recursive function to calculate the path
length having maximum number of bends.
The following are parameters for this function.
node -. pointer to the current node
dir -. determines whether the current node
is left or right child of it's parent node
bends -. number of bends so far in the
current path.
maxBends -. maximum number of bends in a
path from root to leaf
soFar -. length of the current path so
far traversed
len -. length of the path having maximum
number of bends
*/
static int maxBends;
static int len;
static void findMaxBendsUtil(Node node,
char dir, int bends,
int soFar)
{
// Base Case
if (node == null)
return;
// Leaf node
if (node.left == null && node.right == null)
{
if (bends > maxBends)
{
maxBends = bends;
len = soFar;
}
}
// Recurring for both left and right child
else
{
if (dir == 'l')
{
findMaxBendsUtil(node.left, dir,
bends,
soFar + 1);
findMaxBendsUtil(node.right, 'r',
bends + 1,
soFar + 1);
}
else
{
findMaxBendsUtil(node.right, dir,
bends,
soFar + 1);
findMaxBendsUtil(node.left, 'l',
bends + 1,
soFar + 1);
}
}
}
// Helper function to call findMaxBendsUtil()
static int findMaxBends(Node node)
{
if (node == null)
return 0;
len = 0;
maxBends = -1;
int bends = 0;
// Call for left subtree of the root
if (node.left != null)
findMaxBendsUtil(node.left, 'l',
bends, 1);
// Call for right subtree of the root
if (node.right != null)
findMaxBendsUtil(node.right, 'r', bends,
1);
// Include the root node as well in the path length
len++;
return len;
}
// Driver code
public static void Main(String[] args)
{
/* Constructed binary tree is
10
/ \
8 2
/ \ /
3 5 2
\
1
/
9
*/
Node root = newNode(10);
root.left = newNode(8);
root.right = newNode(2);
root.left.left = newNode(3);
root.left.right = newNode(5);
root.right.left = newNode(2);
root.right.left.right = newNode(1);
root.right.left.right.left = newNode(9);
Console.Write(findMaxBends(root) - 1);
}
}
// This code is contributed by Rajput-Ji
Javascript
输出:
4