对 R 编程中的一个因素进行分析——factanal()函数
因子分析也称为探索性因子分析,是 R 编程中使用的一种统计技术,用于识别不活跃的关系结构,并进一步将变量池缩小到少数变量。使用这种技术的主要动机是找出哪个因素对权重分类的影响最大。
Syntax: factanal(x, factors)
Parameters:
x: represents dataset
factors: specifies number of factors to be fitted
例子:
让我们假设,数据集中有许多可用的食物及其食物质地数据点,例如油、密度、脆皮、断裂和硬度。
# Reading csv file of food textures
food_textures <- read.csv("https://userpage.fu-berlin.de/soga/300/30100_data_sets/food-texture.csv")
food_textures <- food_textures[, 2:6]
factor_analysis <- factanal(food_textures, factors = 2)
print(factor_analysis)
# Output to be present as PNG file
png(file = "factorAnalysisGFG.png")
# Plot factor 1 by factor 2
load <- factor_analysis$loadings[, 1:2]
# Plot graph
plot(load, type = "n")
text(load, labels = names(food_textures), cex = .9)
# Saving the file
dev.off()
输出:
Call:
factanal(x = food_textures, factors = 2)
Uniquenesses:
Oil Density Crispy Fracture Hardness
0.334 0.156 0.042 0.256 0.407
Loadings:
Factor1 Factor2
Oil -0.816
Density 0.919
Crispy -0.745 0.635
Fracture 0.645 -0.573
Hardness 0.764
Factor1 Factor2
SS loadings 2.490 1.316
Proportion Var 0.498 0.263
Cumulative Var 0.498 0.761
Test of the hypothesis that 2 factors are sufficient.
The chi-square statistic is 0.27 on 1 degree of freedom.
The p-value is 0.603