如何从 Pandas Dataframe 中的多级列索引中删除一个级别?
在本文中,我们将学习如何从多级列索引中删除一个级别。但在此之前,我们需要了解什么是多级索引。多级索引数据框是一种包含多级或分层索引的数据框。
在本文中,我们将创建一个我们自己选择的具有多列索引的数据框,然后我们将降低层次索引的级别。
分步实施
让我们在示例的帮助下使用分步实现来理解这一点。
第 1 步:导入所有需要的库。
Python3
# importing all important libraries
import pandas as pd
Python3
# Creating a multilevel index
index = pd.MultiIndex.from_tuples([("Group 1", "Group 1"),
("Group 1", "Group 2"),
("Group 3","Group 3")])
# Creating a pandas dataframe with
# multilevel-column indexing
df = pd.DataFrame([["Ross","Joey","Chandler"],
["Rachel","","Monica"]],
columns=index)
# Labelling the dataframe index.
index = df. index
index. name = "F.R.I.E.N.D.S"
# Showing the above multi-index column
# dataframe
print(df)
Python3
# Dropping a level down
df.columns = df.columns.droplevel(0)
Python3
print(df)
Python3
# importing all important libraries
import pandas as pd
# Creating a multilevel index
index = pd.MultiIndex.from_tuples([("Company A", "Company B","Company C"),
("Company A", "Company A","Company B"),
("Company A","Company B","Company C")])
# Creating a pandas dataframe with
# multilevel-column indexing
df = pd.DataFrame([["Atreyi","Digangana","Sohom"],
["Sujit","Bjon","Rajshekhar"],
["Debosmita","Shatabdi",""]],
columns=index)
# Labelling the dataframe index.
index = df. index
index. name = "ECE Placement"
# Showing the above multi-index column
# dataframe
print(df)
Python3
# Dropping a level number 2
df.columns = df.columns.droplevel(2)
print(df)
Python3
# importing all important libraries
import pandas as pd
# Creating a multilevel index
index = pd.MultiIndex.from_tuples([("Company A", "Company B", "Company C"),
("Company A", "Company A", "Company B"),
("Company A", "Company B", "Company C")])
# Creating a pandas dataframe with
# multilevel-column indexing
df = pd.DataFrame([["Atreyi", "Digangana", "Sohom"],
["Sujit", "Bjon", "Rajshekhar"],
["Debosmita", "Shatabdi", ""]],
columns=index)
# Labelling the dataframe index.
index = df. index
index. name = "ECE Placement"
# Showing the above multi-index column
# dataframe
print(df)
Python3
# Dropping a level down
df.columns = df.columns.droplevel(0)
# Dropping another level down
df.columns = df.columns.droplevel(0)
# Showing the dataframe
print(df)
Python3
# importing all important libraries
import pandas as pd
# Creating a pandas dataframe
df = pd.DataFrame([["Coding", "System Design"],
["DBMS", "Aptitude"],
["Logical Reasoning", "Development"]])
# Creating multilevel index from tuples
df.columns = pd.MultiIndex.from_tuples([('Group 1', 'Group 2', 'Group 3', 'Group 4'),
('Group 3', 'Group 4', 'Group 5', 'Group 6')],
names=['level 1', 'level 2', 'level 3', 'level 4'])
# Showing the dataframe
print(df)
Python3
# Dropping a level down(Level 1)
df.columns = df.columns.droplevel(0)
# Dropping a level down after
# re-arrangement(Level 2)
df.columns = df.columns.droplevel(1)
# Showing the dataframe
print(df)
第 2 步:创建一个多级列索引 Pandas Dataframe 并显示它。
我们正在使用MultiIndex.from_tuples()创建一个多索引列 这有助于我们创建多个索引,一个下一个,并且它是按列创建的。之后,我们使用 pd.Dataframe() 创建数据并将其转换为表格格式,以列名作为多级索引。此外,我们正在使用 df.index 更改表的索引名称。
蟒蛇3
# Creating a multilevel index
index = pd.MultiIndex.from_tuples([("Group 1", "Group 1"),
("Group 1", "Group 2"),
("Group 3","Group 3")])
# Creating a pandas dataframe with
# multilevel-column indexing
df = pd.DataFrame([["Ross","Joey","Chandler"],
["Rachel","","Monica"]],
columns=index)
# Labelling the dataframe index.
index = df. index
index. name = "F.R.I.E.N.D.S"
# Showing the above multi-index column
# dataframe
print(df)
输出:
第 3 步:删除数据帧的级别
现在使用Python创建了一个多级列索引数据框。现在让我们实现上面的概念。我们需要降低一个级别。我们可以使用df.columns.droplevel(level=0)来做到这一点。这有助于我们从索引 0 的顶部降低索引级别。
蟒蛇3
# Dropping a level down
df.columns = df.columns.droplevel(0)
第 4 步:显示所需的结果
蟒蛇3
print(df)
输出:
因此,我们已经能够成功删除索引列的级别。
让我们看一些基于上述方法的更多示例。
示例 1:
在下一个示例中,我们将从多级列索引中的特定索引中删除一个级别。这可以使用我们之前使用的相同语法来完成[ df.columns.droplevel(level=0) ] 如果我们指定级别编号,则根据从零开始的索引删除以下索引。那么让我们开始实施这个概念。
蟒蛇3
# importing all important libraries
import pandas as pd
# Creating a multilevel index
index = pd.MultiIndex.from_tuples([("Company A", "Company B","Company C"),
("Company A", "Company A","Company B"),
("Company A","Company B","Company C")])
# Creating a pandas dataframe with
# multilevel-column indexing
df = pd.DataFrame([["Atreyi","Digangana","Sohom"],
["Sujit","Bjon","Rajshekhar"],
["Debosmita","Shatabdi",""]],
columns=index)
# Labelling the dataframe index.
index = df. index
index. name = "ECE Placement"
# Showing the above multi-index column
# dataframe
print(df)
输出:
现在,如果我们想降低索引为 2 的级别,那么让我们看看会发生什么!
蟒蛇3
# Dropping a level number 2
df.columns = df.columns.droplevel(2)
print(df)
输出:
因此,我们可以观察到,在多级列索引中,我们成功删除了索引号为 2 的级别。
示例 2:
在这个例子中,我们将实现多级索引的更多概念。我们将同时删除多个级别。
蟒蛇3
# importing all important libraries
import pandas as pd
# Creating a multilevel index
index = pd.MultiIndex.from_tuples([("Company A", "Company B", "Company C"),
("Company A", "Company A", "Company B"),
("Company A", "Company B", "Company C")])
# Creating a pandas dataframe with
# multilevel-column indexing
df = pd.DataFrame([["Atreyi", "Digangana", "Sohom"],
["Sujit", "Bjon", "Rajshekhar"],
["Debosmita", "Shatabdi", ""]],
columns=index)
# Labelling the dataframe index.
index = df. index
index. name = "ECE Placement"
# Showing the above multi-index column
# dataframe
print(df)
输出:
正如我们所看到的,每个数组列表都包含按列的索引。因此,三个数组意味着三列,数组中的值数是指行数。现在让我们从数据框中删除多个索引。我们可以通过多次调用df.columns.droplevel(level=0)来做到这一点。但这里有一个问题!
蟒蛇3
# Dropping a level down
df.columns = df.columns.droplevel(0)
# Dropping another level down
df.columns = df.columns.droplevel(0)
# Showing the dataframe
print(df)
如我们所见,有两个droplevel语句的级别为 0。这是因为在删除单个级别后,其余的会重新排列。因此,位于索引 1 的级别现在将变为索引 0,因此在这种情况下会写入多个 droplevel。
输出:
因此,级别 0 和级别 1 被删除,我们只剩下级别 2,现在显示为级别 0。
示例 3:
在最后一个示例中,让我们从数据框中的各个位置删除多个级别。
蟒蛇3
# importing all important libraries
import pandas as pd
# Creating a pandas dataframe
df = pd.DataFrame([["Coding", "System Design"],
["DBMS", "Aptitude"],
["Logical Reasoning", "Development"]])
# Creating multilevel index from tuples
df.columns = pd.MultiIndex.from_tuples([('Group 1', 'Group 2', 'Group 3', 'Group 4'),
('Group 3', 'Group 4', 'Group 5', 'Group 6')],
names=['level 1', 'level 2', 'level 3', 'level 4'])
# Showing the dataframe
print(df)
输出:
现在让我们分别删除级别 1 和 3:
蟒蛇3
# Dropping a level down(Level 1)
df.columns = df.columns.droplevel(0)
# Dropping a level down after
# re-arrangement(Level 2)
df.columns = df.columns.droplevel(1)
# Showing the dataframe
print(df)
正如我们所见,在第一种情况下,我们从索引 0 下降了一个级别。重新排列后,第 2 级现在将变为多级索引数据帧的 0 个索引。现在为了删除3级,我们必须根据重新排列后的基于0的索引将级别指定为1。现在级别 2 和 4 将显示在结果输出中。
输出: