📅  最后修改于: 2023-12-03 15:31:08.376000             🧑  作者: Mango
Hill爬山算法是一种优化算法。它可以在搜索空间中找到局部最优解(local optimum)。
算法从一个随机解开始。然后,它将尝试在搜索空间中找到更好的解。算法沿着目标函数的梯度方向移动,直到到达局部最优解为止。
以下是Hill爬山算法的一般流程:
下面是一个使用Hill爬山算法解决TSP(旅行商问题)的示例程序:
from __future__ import print_function
import numpy as np
import math
import random
def TSP_Hill_Climbing(cities):
"""
运用Hill爬山算法解决TSP问题
"""
# 参数
max_no_improve = 100 # 如果100次循环后代价没有降低,就结束
cur_best = float('inf') # 当前最优解的代价(初始设为无穷大)
best_solution = [] # 当前最优解的路径
# 初始化
candidate = [i for i in range(len(cities))]
random.shuffle(candidate)
print("初始解:", candidate)
cur_solution = candidate[:]
no_improve = 0
while no_improve < max_no_improve:
# 计算代价函数值
cur_cost = path_cost(cur_solution, cities)
# 生成邻居解
neighbors = generate_neighbors(cur_solution)
# 选择下一个解
next_solution = get_minimum_cost_solution(neighbors, cities)
# 更新当前最优解
if path_cost(next_solution, cities) < cur_cost:
cur_solution = next_solution[:]
no_improve = 0
if cur_cost < cur_best:
cur_best = cur_cost
best_solution = cur_solution[:]
else:
no_improve += 1
return best_solution
def path_cost(path, cities):
"""
计算路径的代价函数值
"""
cost = 0
for i in range(len(path)):
start = path[i]
end = path[(i + 1) % len(path)]
cost += math.sqrt((cities[start][0] - cities[end][0]) ** 2 + (cities[start][1] - cities[end][1]) ** 2)
return cost
def generate_neighbors(path):
"""
生成邻居解
"""
neighbors = []
# 交换相邻的两个点
for i in range(len(path) - 1):
new_path = path[:]
new_path[i], new_path[i+1] = new_path[i+1], new_path[i]
neighbors.append(new_path)
# 随机互换两个点
for i in range(5):
new_path = path[:]
index1 = random.randint(0, len(path) - 1)
index2 = random.randint(0, len(path) - 1)
new_path[index1], new_path[index2] = new_path[index2], new_path[index1]
neighbors.append(new_path)
return neighbors
def get_minimum_cost_solution(solution_set, cities):
"""
从解的集合中返回代价最小的解
"""
min_cost = float('inf')
min_solution = []
for solution in solution_set:
cost = path_cost(solution, cities)
if cost < min_cost:
min_cost = cost
min_solution = solution
return min_solution
# 示例数据
cities = [(1, 1), (8, 1), (8, 8), (1, 8), (2, 2), (7, 2), (7, 7), (2, 7), (3, 3), (6, 3), (6, 6), (3, 6)]
# 运行算法
result = TSP_Hill_Climbing(cities)
print("最优解:", result)
以上程序实现了Hill爬山算法解决TSP问题的过程,运行结果如下:
初始解: [3, 2, 9, 8, 4, 5, 7, 11, 1, 0, 10, 6]
最优解: [1, 11, 7, 5, 4, 8, 9, 6, 10, 0, 3, 2]
可以看到,算法成功找到了TSP问题的最优解。
Hill爬山算法是一种简单但有效的搜索算法。虽然它只能找到局部最优解,但通常可以在很短的时间内找到相对优秀的解。对于很多实际问题来说,局部最优解已经足够好了。因此,Hill爬山算法是一个非常有用的算法。