📅  最后修改于: 2020-12-11 05:01:15             🧑  作者: Mango
ResNet是一个预先训练的模型。它使用ImageNet进行培训。在ImageNet上预训练的ResNet模型权重。它具有以下语法-
keras.applications.resnet.ResNet50 (
include_top = True,
weights = 'imagenet',
input_tensor = None,
input_shape = None,
pooling = None,
classes = 1000
)
这里,
include_top指网络顶部的完全连接层。
权重参考ImageNet上的预训练。
input_tensor引用可选的Keras张量,以用作模型的图像输入。
input_shape表示可选的形状元组。该模型的默认输入大小为224×224。
类是指可选的若干类,以对图像进行分类。
让我们通过写一个简单的例子来理解模型-
让我们加载以下指定的必要模块-
>>> import PIL
>>> from keras.preprocessing.image import load_img
>>> from keras.preprocessing.image import img_to_array
>>> from keras.applications.imagenet_utils import decode_predictions
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from keras.applications.resnet50 import ResNet50
>>> from keras.applications import resnet50
让我们选择一个输入图像, Lotus如下所示-
>>> filename = 'banana.jpg'
>>> ## load an image in PIL format
>>> original = load_img(filename, target_size = (224, 224))
>>> print('PIL image size',original.size)
PIL image size (224, 224)
>>> plt.imshow(original)
>>> plt.show()
在这里,我们加载了图像(banana.jpg)并显示了它。
让我们将输入Banana转换为NumPy数组,以便可以将其传递到模型中以进行预测。
>>> #convert the PIL image to a numpy array
>>> numpy_image = img_to_array(original)
>>> plt.imshow(np.uint8(numpy_image))
>>> print('numpy array size',numpy_image.shape)
numpy array size (224, 224, 3)
>>> # Convert the image / images into batch format
>>> image_batch = np.expand_dims(numpy_image, axis = 0)
>>> print('image batch size', image_batch.shape)
image batch size (1, 224, 224, 3)
>>>
让我们将输入信息输入模型以获取预测
>>> prepare the image for the resnet50 model >>>
>>> processed_image = resnet50.preprocess_input(image_batch.copy())
>>> # create resnet model
>>>resnet_model = resnet50.ResNet50(weights = 'imagenet')
>>> Downloavding data from https://github.com/fchollet/deep-learning-models/releas
es/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5
102858752/102853048 [==============================] - 33s 0us/step
>>> # get the predicted probabilities for each class
>>> predictions = resnet_model.predict(processed_image)
>>> # convert the probabilities to class labels
>>> label = decode_predictions(predictions)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/
data/imagenet_class_index.json
40960/35363 [==================================] - 0s 0us/step
>>> print(label)
[
[
('n07753592', 'banana', 0.99229723),
('n03532672', 'hook', 0.0014551596),
('n03970156', 'plunger', 0.0010738898),
('n07753113', 'fig', 0.0009359837) ,
('n03109150', 'corkscrew', 0.00028538404)
]
]
在此,模型正确地将图像预测为香蕉。