使用 Matplotlib 可视化快速排序
通过分析和比较为比较和交换元素而发生的操作数量,可视化算法可以更容易地理解它们。为此,我们将使用 matplotlib 绘制条形图来表示数组的元素,
方法 :
- 我们将生成一个包含随机元素的数组。
- 该算法将在该数组上调用,并且出于可视化目的,将使用 yield 语句而不是 return 语句。
- 在比较和交换之后,我们将产生数组的当前状态。因此该算法将返回一个生成器对象。
- Matplotlib 动画将用于可视化数组的比较和交换。
- 该数组将存储在 matplotlib 条形容器对象 ('bar_rects') 中,其中每个条形的大小将等于数组中元素的相应值。
- matplotlib 动画的内置 FuncAnimation 方法会将容器和生成器对象传递给用于创建动画的函数。动画的每一帧对应于生成器的一次迭代。
- 重复调用的动画函数会将矩形的高度设置为元素的值。
python3
# import all the modules
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from mpl_toolkits.mplot3d import axes3d
import matplotlib as mp
import numpy as np
import random
# quicksort function
def quicksort(a, l, r):
if l >= r:
return
x = a[l]
j = l
for i in range(l + 1, r + 1):
if a[i] <= x:
j += 1
a[j], a[i] = a[i], a[j]
yield a
a[l], a[j]= a[j], a[l]
yield a
# yield from statement used to yield
# the array after dividing
yield from quicksort(a, l, j-1)
yield from quicksort(a, j + 1, r)
# function to plot bars
def showGraph():
# for random unique values
n = int(input("enter array size\n"))
a = [i for i in range(1, n + 1)]
random.shuffle(a)
datasetName ='Random'
# generator object returned by the function
generator = quicksort(a, 0, n-1)
algoName = 'Quick Sort'
# style of the chart
plt.style.use('fivethirtyeight')
# set colors of the bars
data_normalizer = mp.colors.Normalize()
color_map = mp.colors.LinearSegmentedColormap(
"my_map",
{
"red": [(0, 1.0, 1.0),
(1.0, .5, .5)],
"green": [(0, 0.5, 0.5),
(1.0, 0, 0)],
"blue": [(0, 0.50, 0.5),
(1.0, 0, 0)]
}
)
fig, ax = plt.subplots()
# bar container
bar_rects = ax.bar(range(len(a)), a, align ="edge",
color = color_map(data_normalizer(range(n))))
# setting the limits of x and y axes
ax.set_xlim(0, len(a))
ax.set_ylim(0, int(1.1 * len(a)))
ax.set_title("ALGORITHM : "+ algoName + "\n" + "DATA SET : " +
datasetName, fontdict = {'fontsize': 13, 'fontweight':
'medium', 'color' : '#E4365D'})
# the text to be shown on the upper left indicating the number of iterations
# transform indicates the position with relevance to the axes coordinates.
text = ax.text(0.01, 0.95, "", transform = ax.transAxes, color = "#E4365D")
iteration = [0]
def animate(A, rects, iteration):
for rect, val in zip(rects, A):
# setting the size of each bar equal to the value of the elements
rect.set_height(val)
iteration[0] += 1
text.set_text("iterations : {}".format(iteration[0]))
# call animate function repeatedly
anim = FuncAnimation(fig, func = animate,
fargs = (bar_rects, iteration), frames = generator, interval = 50,
repeat = False)
plt.show()
showGraph()
输出 :
对于数组大小 20